Chemical Engineering Journal 320 (2017) 124-134

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Morphology-dependent properties of Co_3O_4/CeO_2 catalysts for low temperature dibromomethane (CH_2Br_2) oxidation

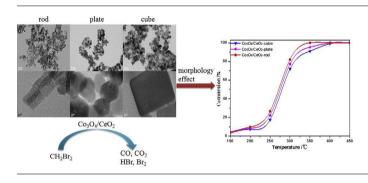
Chemical

Engineering Journal

Jian Mei, Yu Ke, Zhongjue Yu, Xiaofang Hu, Zan Qu, Naiqiang Yan*

School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China

HIGHLIGHTS


- Co₃O₄/CeO₂-rod exhibited the high catalytic activity of CH₂Br₂ oxidation.
 CeO₂ morphology strongly affected
- Co₃O₄-CeO₂ interactions and structures of Co₃O₄/CeO₂ catalysts. • Co³⁺ species, surface-adsorbed
- oxygen and oxygen vacancies were most abundant on Co_3O_4/CeO_2 -rod.
- The reaction mechanism for CH_2Br_2 oxidation over Co_3O_4/CeO_2 catalysts was proposed.

ARTICLE INFO

Article history: Received 17 January 2017 Received in revised form 10 March 2017 Accepted 11 March 2017 Available online 14 March 2017

Keywords: Dibromomethane Co₃O₄ CeO₂ nanocrystals Metal-support interaction

G R A P H I C A L A B S T R A C T

ABSTRACT

Brominated hydrocarbons are a typical pollutant in purified terephthalic acid (PTA) exhaust gas, which is harmful for human health and the environment once released to the atmosphere. In this study, three Co_3O_4/CeO_2 catalysts with different CeO_2 morphologies (rod, plate, and cube) were prepared and were used for low temperature dibromomethane (CH_2Br_2) oxidation, which was used as the model compound for brominated hydrocarbons. The experimental results showed that Co_3O_4/CeO_2 -rod achieved significantly higher catalytic activity, with a T-90 of approximately 312 °C for CH_2Br_2 oxidation and higher selectivity to CO_2 than Co_3O_4/CeO_2 -plate and Co_3O_4/CeO_2 -cube. All of the Co_3O_4/CeO_2 catalysts investigated were stable for at least 30 h at 500 ppm CH₂Br₂ and 10% O_2 at a GHSV of 75,000 mL/(g·h)⁻¹, and the final products were CO_x , Br_2 , and HBr, without the formation of other Br-containing organic byproducts. The higher catalytic activity of Co_3O_4/CeO_2 -rod was attributed to the high content of Co_3^{++} , more surface-adsorbed oxygen, and more oxygen vacancies in their exposed {100} and {110} planes. In addition, Co_3O_4 had a stronger interaction with CeO₂-rod, making it superior for CH_2Br_2 oxidation. Moreover, on the basis of the analysis of products and *in situ* DRIFTS studies, a credible reaction mechanism for CH₂Br₂ oxidation over Co_3O_4/CeO_2 catalysts was proposed.

© 2017 Published by Elsevier B.V.

1. Introduction

Volatile organic compounds (VOCs) not only are recognized as one of potent and important contributors to air pollution [1], but also put human health and the environment at risk [2]. Particu-

* Corresponding author. E-mail address: nqyan@sjtu.edu.cn (N. Yan). larly, increasing attention is being paid to purified terephthalic acid (PTA) exhaust gas because of its high toxicity and difficulty of treatment [3], and the staging of massive protests against such projects in China in recent years. The PTA exhaust gas contains various organic compounds, such as p-xylene (PX), brominated hydrocarbons, and acetic acid methyl ester [4]. Among all of the treatment methods, catalytic oxidation is one of the most popular methods to treat PTA exhaust gas, by reason of its low energy

consumption and lower contents of secondary pollutants [5]. Nevertheless, the existence of brominated hydrocarbons in PTA exhaust gas demands that the catalyst must have the ability to resist bromine-poisoning. Therefore, the key issue in this method is to develop a high-performance catalyst to remove brominated hydrocarbons.

Currently, researchers are mainly focusing on two types of catalysts for brominated hydrocarbons oxidation, including noble metals [6] and transition metal oxides [3]. In spite of noble metal catalysts display prominent catalytic activity, the low resistance to bromine-poisoning and high cost limits their industrial applications. In contrast, transition metal oxide catalysts have gained increasing attention on account of their low cost, high catalytic activity, and high stability to brominated hydrocarbons oxidation. Thus, it is of great interest to develop transition metal oxide catalysts for brominated hydrocarbons oxidation.

Among many transition metal oxides, the Co-based catalyst has been proven to have a good catalytic performance for brominated hydrocarbons oxidation [7]. However, the catalytic activity, product-selectivity, and stability of the Co-based catalyst need to be further improved. CeO₂ is often used as a support in the catalytic reaction, such as CuO/CeO₂ [8], Au/CeO₂ [9], and FeOOH/ CeO₂ [10], by reason of its prominent oxygen mobility [11], high oxygen storage capacity [12], and some acidic properties [13]. In addition, CeO₂ as a support can promote the dispersion of metal oxides and increase the metal-support interaction [14]. In the past few years, it has been found that the catalytic performance of CeO₂ is affected by exposed lattice planes [15]. Generally, different lattice planes are exposed in different CeO₂ morphologies. For instance, CeO₂ nanorods are prone to expose two {100} planes and four $\{110\}$ planes [16], while CeO₂ nanocubes expose six {100} planes [17]. On the basis of density functional theory, the chemical activities of the different CeO₂ planes follow the order: $\{111\} < \{100\} < \{110\}[18]$, which reveals that it is easier to produce oxygen vacancies on the CeO_2 {110} plane. Until now, there have been many reports about morphology effects of the CeO₂ support on dry-reforming of methane [18] and oxidation of CO [19]. It is reported that Co_3O_4/CeO_2 catalysts have been studied in the field of catalysis due to their unique physicochemical properties. For example, Guo et al. reported that Co₃O₄/meso-CeO₂ had a good catalytic performance for CO preferential oxidation in H₂-rich gases because of the high dispersion of cobalt oxides on meso-CeO₂ supports [20]. Tian et al. found that $(Co_3O_4)_{50\%}/CeO_2$ had a better reducibility and activity oxygen species, which coincided with its high catalytic activity for CO oxidation [21]. However, research about Co_3O_4/CeO_2 catalysts, relating the effect of CeO_2 morphology on the catalytic performance for brominated hydrocarbons oxidation. is rare.

In this study, Co_3O_4/CeO_2 catalysts with different CeO_2 morphologies (rod, plate, and cube) were prepared and were used for dibromomethane (CH₂Br₂) oxidation, which was chosen as the model compound for brominated hydrocarbons. The physicochemical properties of Co_3O_4/CeO_2 catalysts with different CeO_2 morphologies were studied. The CH₂Br₂ conversion, analysis of products, and catalyst stability were also investigated. On the basis of the analysis of products and *in situ* DRIFTS studies, a credible reaction mechanism for CH₂Br₂ oxidation over Co_3O_4/CeO_2 catalysts was proposed.

2. Experimental section

2.1. Catalyst preparation

 CeO_2 nanorods and nanocubes were prepared by the hydrothermal method. Typically, 3.48 g $Ce(NO_3)_3{\cdot}6H_2O$ and 19.2 g NaOH

were dissolved in 40 mL ultrapure water, respectively. Next, the NaOH solution was dripped into the $Ce(NO_3)_3$ solution, and the mixed solution was magnetic stirred for 60 min. Then, the mixed solution was transferred into a stainless steel reaction kettle with Teflon lining and maintained at constant temperatures (rods: 100 °C; and cubes: 180 °C) for 24 h.

CeO₂ nanoplates were prepared by the CTAB (Cetyltrimethyl Ammonium Bromide)-assisted hydrothermal method. Typically, 0.73 g CTAB and 2.61 g Ce(NO₃)₃·6H₂O were dissolved in 80 mL ultrapure water and magnetic stirred for 30 min. Subsequently, 8 mL NH₃·H₂O was dripped into the mixed solution and magnetic stirred for 30 min, and then the mixed solution was transferred into a stainless steel reaction kettle with Teflon lining and maintained at 100 °C for 24 h.

After filtering and washing with ultrapure water, the obtained precipitates were dried at 60 °C for 12 h, and then calcined at 500 °C for 3 h in air.

 Co_3O_4/CeO_2 catalysts with different CeO_2 morphologies (rod, plate, and cube) were prepared by the impregnation method. CeO_2 powders were mixed with $Co(NO_3)_2 \cdot 6H_2O$ solution under magnetic stirring at 60 °C to gain Co_3O_4/CeO_2 (5 wt% Co/CeO_2). The samples were dried at 60 °C for 12 h, and then calcined at 500 °C for 3 h in air. The samples were flagged as CeO₂-rod, CeO₂-plate, CeO₂-cube, Co₃O₄/CeO₂-rod, Co₃O₄/CeO₂-plate, and Co₃O₄/CeO₂-cube.

2.2. Catalyst characterization

X-ray diffraction (XRD) were performed on the Shimadzu XRD-6100, and the diffractograms were obtained in the 2θ range of 10° -80°, with a scanning velocity of 10° /min. The N₂ adsorption-desorption isotherms were collected using a physical adsorption instrument (Nova 2200e) at -196 °C. Before each experiment, the samples were pretreated under the condition of vacuum at 200 °C for 3 h. The specific surface area was obtained by the multipoint BET model. Raman spectra were recorded on a SENTERRA R200 microscope. The excitation source was the 532 nm line of Ar ion laser. The morphology of the samples was observed using transmission electron microscopy (TEM) (JEOL-2100F) and scanning electron microscope (SEM) (JSM-7800F). Before each experiment, the samples were evenly dispersed in ethanol solution under the condition of ultrasound. Chemical analysis of the samples was performed on the inductively coupled plasma (ICP) spectrometer with iCAP 6000 Radial. The H₂-TPR experiments were performed on an automatic chemical adsorption instrument (AutoChem II, 2920). Before each experiment, the 100 mg samples were degassed in Ar flow at 300 °C for 2 h. Subsequently, after cooling to 100 °C, the samples were heated up to 1000 °C in 10% H₂/Ar flow, with a heating rate of 10 °C/min. The NH₃-TPD experiments were also performed on an automatic chemical adsorption instrument (AutoChem II, 2920). Before each experiment, the 500 mg samples were degassed in He flow at 300 °C for 2 h. Then, after cooling to 50 °C, NH₃ adsorption was performed in 10% NH₃/He flow at 50 $^\circ C$ for 1 h. Subsequently, the samples were treated in He flow for 30 min to remove gaseous NH₃, and then heated up to 800 °C in He flow, with a heating rate of 10 °C/min. X-ray photoelectron spectroscopy (XPS) was carried out on a PHI-5300 (PE) spectrometer using Mg Ka radiation as the excitation source, the binding energy was calibrated using the C 1 s line at 284.8 eV as an internal standard.

2.3. Catalytic performance evaluation

The catalytic performance for CH_2Br_2 oxidation was investigated by a fixed-bed flow reactor (i.d 6 mm). 120 mg catalyst was placed in the middle of the reactor using silica wool. The gas mixture contained 500 ppm CH_2Br_2 , 10% O_2 , 0 or 2% H_2O , 0 or 500 ppm p-xylene (PX), and N_2 as the balance. The gaseous CH_2Br_2 was produced by a nitrogen-blowing method, passing N_2 flow through a bottle containing pure CH_2Br_2 in a thermostatic oil bath. The gaseous H_2O and PX were produced by the same method, respectively. The total gas flow was 150 mL/min, giving a gas hourly space velocity (GHSV) of 75,000 mL/(g·h)⁻¹. The range of catalytic temperatures was from 150 to 450 °C. The concentration of CH_2Br_2 was monitored by a GC-9790 equipped with a FID, and the data were collected at each evaluated temperature after stabilizing for 30 min. The catalytic activity was evaluated in terms of CH_2Br_2 conversion, defined as follows:

$$X_{\text{CH}_2\text{Br}_2} = \frac{C_{\text{in}} - C_{\text{out}}}{C_{\text{in}}} \times 100\%$$
⁽¹⁾

where C_{in} and C_{out} are the CH_2Br_2 concentrations corresponding to the inlet and outlet, respectively.

The outlet gas products were determined by a GCMS-QP2010. The concentrations of Br_2 and HBr were determined by the titration method. The gas containing Br_2 and HBr was first absorbed in a KI solution of a certain concentration. Next, the concentration of Br_2 was determined by the titration using $Na_2S_2O_3$ solution with starch solution as an indicator. The concentration of bromide ions in the absorbed solution was determined by an ion chromatography. The concentrations of CO and CO₂ were monitored by a GC-14B equipped with a FID and a methane conversion oven. The selectivity to CO, CO₂, Br_2 , and HBr were defined as follows, respectively:

$$S_{CO} = \frac{C_{co}}{C_{in} - C_{out}} \times 100\%$$
⁽²⁾

$$S_{CO_2} = \frac{C_{CO_2}}{C_{in} - C_{out}} \times 100\%$$
(3)

$$S_{Br_2} = \frac{C_{Br_2}}{C_{in} - C_{out}} \times 100\%$$
 (4)

$$S_{HBr} = \frac{C_{HBr}}{2(C_{in} - C_{out})} \times 100\%$$
(5)

where C_{co} and C_{CO_2} are the concentrations of CO and CO₂ (ppm) in the outlet, C_{Br_2} and C_{HBr} are the concentrations of Br₂ and HBr (ppm) in the outlet.

2.4. In situ DRIFTS studies

In situ DRIFTS experiments were carried out on a Fourier transform infrared spectrometer (FTIR, Nicolet 6700) fitted with a MCT detector. The DRIFTS cell was fitted with ZnSe windows and a heating chamber. Real reaction conditions were simulated by a temperature controller and mass flow controllers. The *in situ* DRIFTS spectra were collected in the range of 4000–800 cm⁻¹ at a resolution of 4 cm⁻¹ and over 100 scans. Prior to each experiment, the samples were pretreated with 10% O₂/N₂ at 400 °C for 2 h to remove surface contaminants, and then cooled to 50 °C. Spectra of the clean catalyst surface were collected and used as the background. Next, a gas stream containing 500 ppm CH₂Br₂/10% O₂/ N₂ was exposed to the DRIFTS cell at 50 °C for 1 h. Finally, the catalyst was treated in 10% O₂/N₂ from 50 to 400 °C. *In situ* DRIFTS spectra were collected from 50 to 400 °C.

3. Results and discussion

3.1. Catalytic performance

The activity of the CeO₂ and Co₃O₄/CeO₂ catalysts investigated for CH₂Br₂ oxidation is shown in Fig. 1. It is obvious that CH₂Br₂ conversion over all of the catalysts increased with the increase of temperature, and an apparent difference in the activity was also found. Pure CeO₂ supports exhibited considerable activity, particularly, the activity of CeO₂-rod was the highest among the three CeO₂ supports, with a T-90 (the temperature needed for 90% conversion) of approximately 370 °C, followed by CeO₂-plate and by CeO₂-cube, which was the least active. With the addition of Co, the activity was significantly improved and the conversion curves shifted to lower temperatures. Co₃O₄/CeO₂-rod exhibited the highest activity, with a T-90 of approximately 312 °C, followed by Co₃O₄/CeO₂-plate and by Co₃O₄/CeO₂-cube, which was the least active.

3.2. Catalyst characterization

Fig. 2 shows the TEM and HRTEM images of Co₃O₄/CeO₂ catalysts with different CeO₂ morphologies. The TEM images indicated that the three different CeO₂ catalysts still kept their original morphologies after the addition of Co. Fig. 2a displayed that Co₃O₄/CeO₂-rod was composed of nanorods with a width of approximately 10 nm and length varying from 20 to 100 nm. According to the HRTEM image (Fig. 2b), two types of lattice fringe directions, corresponded to (220) and (200) planes, were found for Co₃O₄/CeO₂-rod, which had interplanar spacing of 0.19 and 0.27 nm, respectively. Therefore, Co₃O₄/CeO₂-rod grew along the [110] direction and mainly exposed the unstable {110} and {100} planes [22]. The TEM image of Co₃O₄/CeO₂-plate displayed that it consisted of hexagonal plates with a diameter of approximately 18 nm (Fig. 2c). The HRTEM image in Fig. 2d displayed that the lattice fringe attributed to the (111) plane, with an interplanar spacing of 0.32 nm, belonged to the $\{111\}$ plane [23]. The Co₃O₄/ CeO_2 -cube was cube with uneven size varying from 15 to 60 nm. The HRTEM image in Fig. 2f displayed that the lattice fringe assigned to the (200) plane with an interplanar spacing of 0.27 nm, belonged to the $\{100\}$ plane. The morphology of $Co_3O_4/$ CeO_2 -cube matched with that of a cube exposed by six {100} planes [24]. Interestingly, the lattice fringes attributed to Co₃O₄ were not observed for all three Co₃O₄/CeO₂ catalysts, indicating

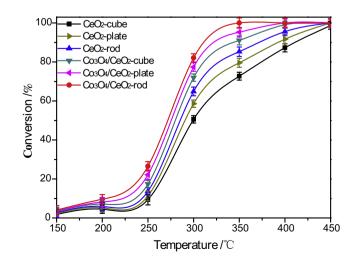


Fig. 1. Conversion curves for CH_2Br_2 oxidation as a function of temperature over the CeO_2 and Co_3O_4/CeO_2 catalysts investigated.

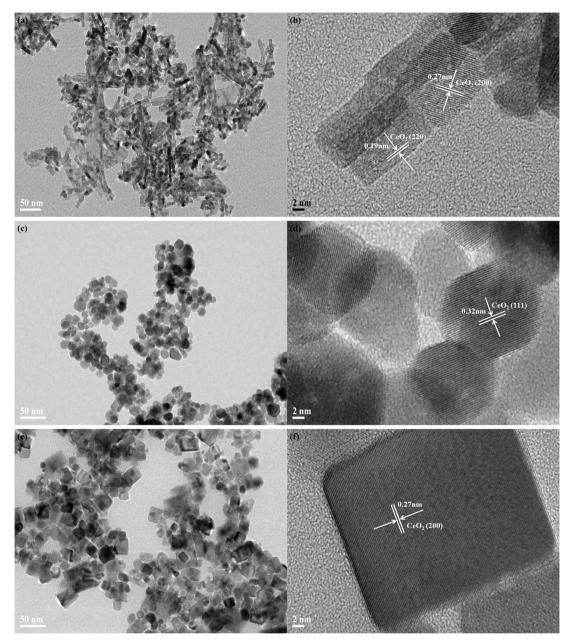


Fig. 2. TEM and HRTEM images of Co₃O₄/CeO₂-rod (a, b), Co₃O₄/CeO₂-plate (c, d), and Co₃O₄/CeO₂-cube (e, f).

that Co_3O_4 had a good dispersion on the surface of all three CeO_2 supports. To further obtain the morphology information of Co_3O_4/CeO_2 catalysts with different CeO_2 morphologies, SEM experiment was also conducted, and the images of SEM (Fig. S1) were consistent with those of TEM. The above results revealed that the desired morphologies of Co_3O_4/CeO_2 catalysts with different CeO_2 planes were successfully synthesized.

Fig. 3 shows the XRD patterns of the CeO₂ and Co₃O₄/CeO₂ catalysts investigated. The diffraction peaks at 28.5, 33.0, 47.5, 56.3, 59.1, 69.4, 76.8, and 79.1° were ascribed to the face-centered cubic fluorite structure of CeO₂ in all of the samples [25]. Interestingly, only a very weak peak at 36.9°, assigned to Co₃O₄ [26], was observed in Co₃O₄/CeO₂ catalysts, indicating thorough dispersion of Co₃O₄ or amorphous Co-containing species on the CeO₂ supports.

The chemical compositions of the CeO_2 and Co_3O_4/CeO_2 catalysts investigated were measured by ICP and the results were listed

in Table 1. Co/CeO₂ mass ratios of the three Co_3O_4/CeO_2 catalysts were basically consistent with the nominal values. The N₂ adsorption-desorption isotherm and pore size distribution of the CeO_2 and Co_3O_4/CeO_2 catalysts investigated are shown in Fig. S2, and the physical properties estimated by N₂ physisorption were also listed in Table 1. As shown in Fig. S2(a), the N₂ adsorptiondesorption isotherms of the CeO2 and Co3O4/CeO2 catalysts investigated were assigned to type IV with a type H3 hysteresis loop at high relative pressure. As shown in Fig. S2(b), it was found that the pore size distribution of the CeO₂ and Co₃O₄/CeO₂ catalysts investigated was not uniform and all the CeO₂ and Co₃O₄/CeO₂ catalysts investigated had porosity structures. As listed in Table 1, the average pore size of CeO₂-rod, CeO₂-plate, and CeO₂-cube were 25.1, 23.4, and 19.8 nm, respectively. With the addition of Co, the average pore size became small and decreased to 24.9, 22.2, and 18.3 nm for Co₃O₄/CeO₂-rod, Co₃O₄/CeO₂-plate, and Co₃O₄/CeO₂cube, respectively. In addition, the pore size of Co₃O₄/CeO₂-rod,

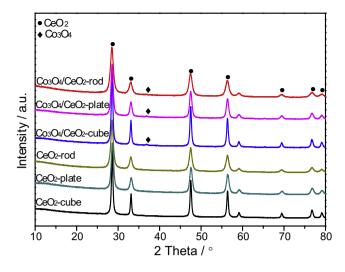


Fig. 3. XRD patterns of the CeO₂ and Co₃O₄/CeO₂ catalysts investigated.

Co₃O₄/CeO₂-plate, and Co₃O₄/CeO₂-cube was centered on approximately 3, 10, and 25 nm, respectively. Moreover, the specific surface area of CeO₂-rod, CeO₂-plate, and CeO₂-cube were 67.1, 52.9, and 26.8 m² g⁻¹, respectively. After the addition of Co, the specific surface area of CeO₂-rod, CeO₂-plate, and CeO₂-cube decreased to 58.9, 44.7, and 15.4 m² g⁻¹, respectively. The specific surface areas were consistent with the crystallite sizes calculated by the results of XRD where Co₃O₄/CeO₂-rod had the smallest Co₃O₄/CeO₂-cube (approximately 10.44 nm while that for Co₃O₄/CeO₂-cube (approximately 16.50 nm) was the largest. The larger specific surface area of CeO₂-rod was beneficial for the dispersion of Co₃O₄, which was conducive to the catalytic performance.

Fig. 4 shows the Raman spectra of the CeO₂ and Co₃O₄/CeO₂ catalysts investigated. For pure CeO₂ supports, a distinct vibrational mode (F_{2g}) at 462 cm⁻¹ was observed, which was belong to the symmetrical stretching vibration of the CeO₂ phase [27]. The maximum half width (MHW) values of the F_{2g} peaks were in the sequence of CeO_2 -rod > CeO_2 -plate > CeO_2 -cube. Generally, the higher MHW values of the F_{2g} peaks, the higher concentrations of oxygen defects [18]. Thus, CeO₂-rod had the highest concentration of oxygen defects, followed by CeO₂-plate, and CeO₂-cube had the least. The Raman spectra of Co₃O₄/CeO₂ catalysts had similarities with those of CeO₂ catalysts. However, the bands assigned to cobalt oxide species were not found, which revealed that they were well dispersed. In addition, the presence of Co led to not only a slight red-shift of F_{2g} peaks from 462 to 443 cm⁻¹ but also the increase of the MHW values. The red-shift together with band broadening revealed the incorporation of Co ions into the surface of CeO₂ sup-

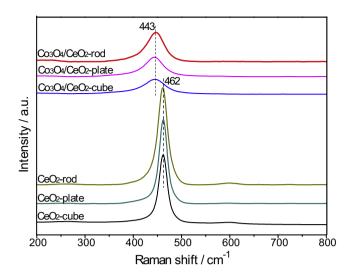


Fig. 4. Raman spectra of the CeO₂ and Co₃O₄/CeO₂ catalysts investigated.

ports, but without changing the original CeO_2 cubic structure, which resulted in the increase of oxygen vacancies.

Fig. 5 shows the H₂-TPR profiles of the CeO_2 and Co_3O_4/CeO_2 catalysts investigated. It can be seen that the CeO₂ supports only showed two reduction peaks, while Co₃O₄/CeO₂ catalysts showed three reduction peaks. For CeO₂ supports, the low-temperature reduction peak was assigned to the reduction of CeO₂ particles with small size while the high-temperature reduction peak was attributed to the reduction of particles with large size [28]. For Co_3O_4/CeO_2 -rod, the former two reduction peaks at approximately 275 and 329 °C were assigned to the reduction of Co³⁺ to Co²⁺ and Co^{2+} to Co^{0} , respectively [29], while the last reduction peak was assigned to the reduction of CeO₂. Similar profiles were also observed for Co₃O₄/CeO₂-plate and Co₃O₄/CeO₂-cube, except that the reduction peaks shifted to higher temperatures. The results suggested that the interaction between Co₃O₄ and CeO₂-rod was the strongest among the three Co₃O₄/CeO₂ catalysts. As well known, the stronger the interaction between Co₃O₄ and CeO₂ supports, the higher the redox ability of cobalt species [30].

Fig. 6 shows the XPS spectra of Co 2p, Ce 3d, and O 1s for the Co_3O_4/CeO_2 catalysts investigated. As can be seen in Fig. 6(a), for the three Co_3O_4/CeO_2 catalysts, two main peaks ascribed to Co $2p_{3/2}$ and Co $2p_{1/2}$ at 781.5–782.7 and 797.0–798.1 eV, respectively, with satellite peaks, were observed. The Co $2p_{3/2}$ spectra could be decomposed into two characteristic peaks, of which the peak with the lower binding energy was corresponded to Co^{3+} , while the peak with the high binding energy was related to Co^{2+} [31]. According to Table 2, the proportion of Co^{3+} to the total Co

Table 1
The structural and physical properties of the CeO_2 and Co_3O_4/CeO_2 catalysts investigated.

Catalyst	Co/CeO ₂ (wt%)	$S_{BET} (m^2 g^{-1})$	Da (nm)	$V (cm^3 g^{-1})$	DCeO ₂ (nm)	DCo ₃ O ₄ (nm)
Co ₃ O ₄ /CeO ₂ -rod	4.68	58.9	24.9	0.363	11.68	10.44
Co ₃ O ₄ /CeO ₂ -plate	4.71	44.7	22.2	0.264	14.63	13.21
Co_3O_4/CeO_2 -cube	4.70	15.4	18.3	0.135	19.67	16.50
CeO ₂ -rod	_	67.1	25.1	0.461	13.38	-
CeO ₂ -plate	_	52.9	23.4	0.332	15.41	-
CeO ₂ -cube	-	26.8	19.8	0.244	20.52	-

Co/CeO₂: Co/CeO₂ mass ratio measured by ICP.

 S_{BET} : Specific surface area estimated by N_2 physisorption.

Da: Average pore diameter estimated by N_2 physisorption.

V: Pore volume estimated by N₂ physisorption.

DCeO₂: CeO₂ crystallite size calculated by Scherrer equation from XRD.

DCo₃O₄: Co₃O₄ crystallite size calculated by Scherrer equation from XRD.

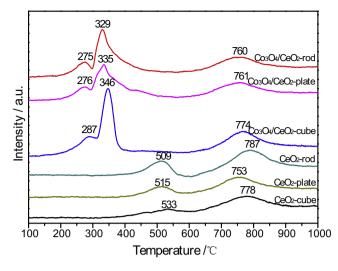
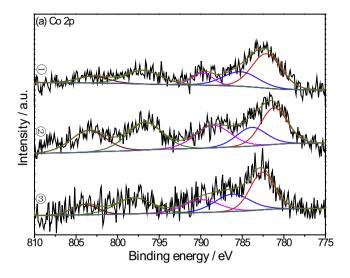
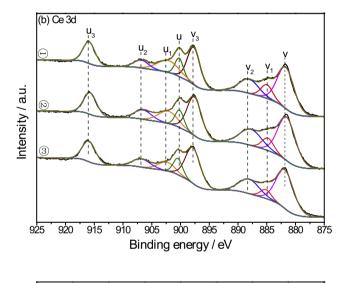


Fig. 5. H₂-TPR profiles of the CeO₂ and Co₃O₄/CeO₂ catalysts investigated.


on Co₃O₄/CeO₂-rod, Co₃O₄/CeO₂-plate, and Co₃O₄/CeO₂-cube was 0.66, 0.63, and 0.59, respectively. Thus, the proportion of Co³⁺ on Co₃O₄/CeO₂-rod was higher than that on Co₃O₄/CeO₂-plate and Co₃O₄/CeO₂-cube, and it is believed that the better catalytic performance of Co₃O₄/CeO₂-rod is associated with the high content of Co³⁺ [7].


Fig. 6(b) shows the XPS spectra of Ce 3d for the Co_3O_4/CeO_2 catalysts investigated. The spectra of Ce 3d could be resolved into eight peaks, of which six peaks denoted as v, v₂, v₃, u, u₂, and u₃ were assigned to Ce⁴⁺, while the other two peaks, denoted as v₁ and u₁, were assigned to Ce³⁺ [32]. According to Table 2, the proportion of Ce³⁺ to the total Ce on Co₃O₄/CeO₂-rod, Co₃O₄/CeO₂-plate, and Co₃O₄/CeO₂-cube was 0.18, 0.15, and 0.11, respectively. It is reported that the transformation between Ce³⁺ and Ce⁴⁺ could produce oxygen vacancies in previous literatures, revealing that the higher the proportion of Ce³⁺, the more oxygen vacancies are formed [33]. Combined with the results of Raman spectroscopy, the oxygen vacancies of Co₃O₄/CeO₂-rod were more than those of Co₃O₄/CeO₂-plate and Co₃O₄/CeO₂-cube. Therefore, it was likely that the better catalytic performance of Co₃O₄/CeO₂-rod was related to the higher proportion of Ce³⁺.

The O 1s XPS spectra of Co₃O₄/CeO₂-rod, Co₃O₄/CeO₂-plate, and Co₃O₄/CeO₂-cube are shown in Fig. 6(c). The asymmetrical O 1s peak was divided into two components: one at BE = 528.8–529.1 eV was corresponded to the surface-lattice oxygen (O_{lat}), and the other at BE = 531.2–531.6 eV was related to the surface-adsorbed oxygen (O_{ads}) [7,34]. According to Table 2, the ratio of O_{ads}/(O_{ads} + O_{lat}) for Co₃O₄/CeO₂-rod was higher than those for Co₃O₄/CeO₂-plate and Co₃O₄/CeO₂-cube, revealing Co₃O₄/CeO₂-rod had more surface adsorbed oxygen, which was beneficial for catalytic oxidation.

3.3. Analysis of products

It is learned that the desired decomposition products of brominated hydrocarbons are CO_2 and Br_2 or HBr. To our disappointments, almost none of the treatment technologies can achieve complete mineralization. In this study, the products after reaction at different temperature over Co_3O_4/CeO_2 -rod, Co_3O_4/CeO_2 -plate, and Co_3O_4/CeO_2 -cube were determined by GCMS, which are shown in Tables 3, S1, and S2. As can be seen in Table 3, for Co_3O_4/CeO_2 rod, the products were CO, CO_2 , HBr, and H₂O at low temperatures (below 200 °C), while Br₂ was generated above 250 °C. Of particular note is that no other bromine products were generated at each

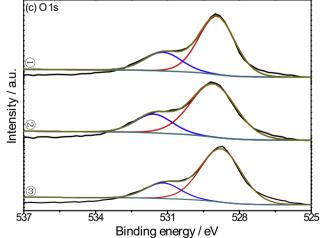


Fig. 6. XPS spectra of (a) Co 2p, (b) Ce 3d and (c) O 1 s for Co₃O₄/CeO₂ catalysts: (1) Co₃O₄/CeO₂-rod, (2) Co₃O₄/CeO₂-plate and (3) Co₃O₄/CeO₂-cube.

evaluated temperature. Moreover, exactly the same results were also observed for Co_3O_4/CeO_2 -plate and Co_3O_4/CeO_2 -cube, as shown in Tables S1 and S2, respectively.

It is also necessary to investigate the selectivity to CO_2 , HBr, and Br₂. Fig. 7 shows the selectivity to CO_2 , Br_2 , and HBr as a

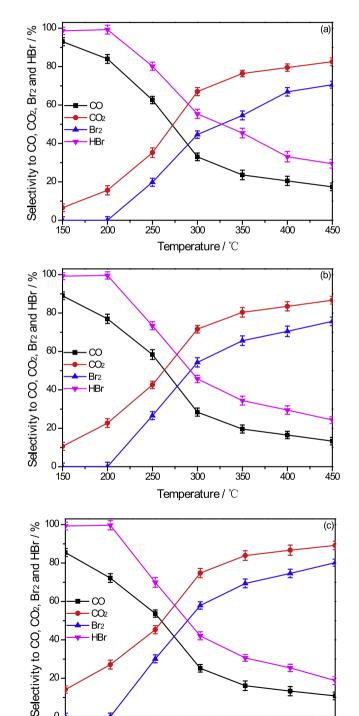
Table 2

XPS parameters of the Co ₃ O ₄	/CeO ₂ catalysts investigated.
--	---

Catalyst	Surface composition (at.%)			$Co^{3+}/(Co^{2+} + Co^{3+})$	$Ce^{3+}/(Ce^{3+} + Ce^{4+})$	$O_{ads}/(O_{ads} + O_{lat})$	Co/Ce
	Со	Ce	0				
Co ₃ O ₄ /CeO ₂ -rod	0.71	6.89	53.54	0.66	0.18	0.25	0.13
Co ₃ O ₄ /CeO ₂ -plate	0.87	6.19	54.33	0.63	0.15	0.22	0.14
Co ₃ O ₄ /CeO ₂ -cube	0.98	8.92	51.71	0.59	0.11	0.20	0.11

Table 3

Products in outlet at different temperature over Co_3O_4/CeO_2 -rod.


Temperature (°C)	Detected substances
150	CH_2Br_2 , CO , CO_2 , HBr , H_2O
200 250	CH ₂ Br ₂ , CO, CO ₂ , HBr, H ₂ O CH ₂ Br ₂ , CO, CO ₂ , HBr, Br ₂ , H ₂ O
300	CH_2Br_2 , CO, CO ₂ , HBr, Br ₂ , H ₂ O CH ₂ Br ₂ , CO, CO ₂ , HBr, Br ₂ , H ₂ O
350	CO, CO ₂ , HBr, Br ₂ , H ₂ O
400	$CO, CO_2, HBr, Br_2, H_2O$
450	CO, CO ₂ , HBr, Br ₂ , H ₂ O

function of temperature over the Co₃O₄/CeO₂ catalysts investigated. It was found that their selectivity were different, depending on the catalysts used. As can be seen in Fig. 7(a), for Co_3O_4/CeO_2 cube, when the temperature increased, the selectivity to CO and HBr gradually decreased, while that to CO₂ and Br₂ gradually increased. Similar results were also observed for Co₃O₄/CeO₂plate and Co₃O₄/CeO₂-rod. The increase of CO₂ was due to further oxidation of CO, and the generation of Br₂ might be assigned to the Deacon reaction $(4HBr + O_2 = 2Br_2 + 2H_2O)$ [7]. For $Co_3O_4/$ CeO₂-cube, the selectivity to CO₂ and Br₂ were approximately 76% and 54%, respectively, at 350 °C, while the selectivity to CO₂ and Br₂ were approximately 80% and 65%, respectively, at 350 °C for Co₃O₄/CeO₂-plate, and approximately 84% and 69%, respectively, at 350 °C for Co₃O₄/CeO₂-rod. The results revealed that Co₃O₄/CeO₂-rod had the highest selectivity to CO₂ and Br₂ among the three Co_3O_4/CeO_2 catalysts.

3.4. The effect of water or p-xylene (PX)

Water vapor usually exists in the PTA exhaust gas, and it is necessary to consider the resistance of the catalyst to humidity. Thus, the CH₂Br₂ oxidation was performed in the presence of 2 vol% H₂O. As shown in Fig. 8 at low temperatures, the CH₂Br₂ conversion slightly increased when H₂O was present, and T-10 (the temperature needed for 10% conversion) decreased by approximately 10 °C. It was most likely that the promotional effect of H₂O on CH₂-Br₂ oxidation at low temperatures was on account of the removal of surface bromine species, based on the reverse Deacon reaction: H₂O + Br⁻ \rightleftharpoons HBr⁺ + OH⁻[3]. However, a decrease in CH₂Br₂ conversion was observed at high temperatures, due to the occupation of H₂O on a part of active sites.

Commonly, there are many organic compounds in PTA exhaust gas. However, it is not realistic to simultaneously study the effect of all of the organic compounds on CH_2Br_2 oxidation. Hence, we mainly focused on the characteristics of reactions involving binary organic pollutants. Thus, the effect of p-xylene (PX) on CH_2Br_2 oxidation over Co_3O_4/CeO_2 -rod was also investigated. As shown in Fig. 8, the CH_2Br_2 conversion was obviously inhibited when PX was present, both at low and high temperatures, and T-90 shifted to 355 °C, which might be due to the decrease of oxygen species caused by consumption of surface-active oxygen during PX oxidation.

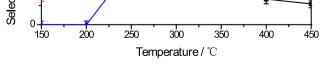
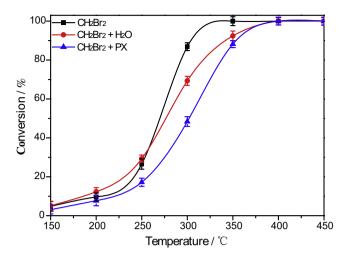



Fig. 7. Selectivity to CO, CO₂, Br₂, and HBr as a function of temperature over Co₃O₄/ CeO₂-cube (a), Co₃O₄/CeO₂-plate (b), and Co₃O₄/CeO₂-rod (c).

Fig. 8. The effect of water or p-xylene (PX) on CH_2Br_2 oxidation over Co_3O_4/CeO_2 -rod; CH_2Br_2 alone: 500 ppm CH_2Br_2 ; $CH_2Br_2 + H_2O$: 500 ppm $CH_2Br_2 + 2$ vol% H_2O ; $CH_2Br_2 + PX$: 500 ppm $CH_2Br_2 + 500$ ppm PX; in all cases, 10% O_2 and N_2 balance; GHSV = 75,000 mL/(g-h)⁻¹.

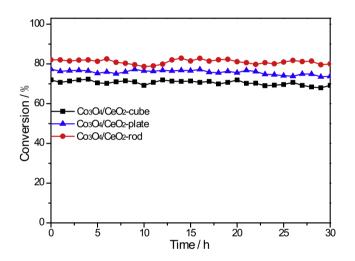


Fig. 9. Stability test of the Co_3O_4/CeO_2 catalysts with different morphologies at 300 $^\circ\text{C}.$

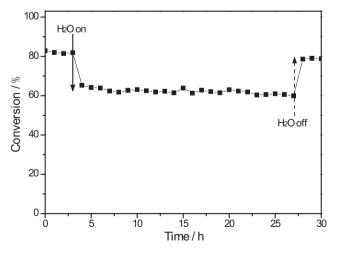


Fig. 10. Stability test of Co₃O₄/CeO₂-rod in the presence of 2 vol% water at 300 °C.

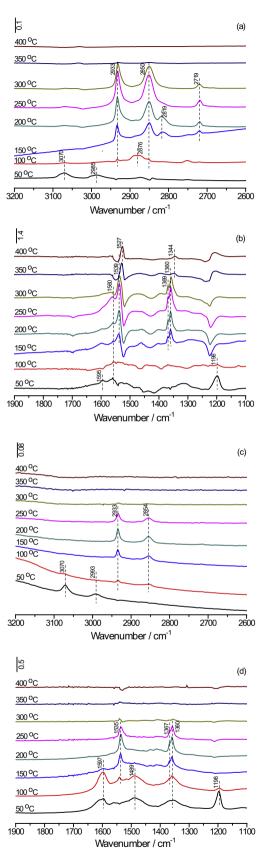


Fig. 11. In situ DRIFTS spectra of CH_2Br_2 oxidation over CeO_2 -rod (a, b) and Co_3O_4/CeO_2 -rod (c, d) catalysts at different temperatures.

3.5. Catalyst stability

To examine the catalytic stability, a long-duration CH₂Br₂ oxidation test was performed at a constant temperature. The onstream evolution of CH₂Br₂ conversion with time at 300 °C for Co_3O_4/CeO_2 catalysts with different CeO_2 morphologies is shown in Fig. 9. Within 30 h, Co₃O₄/CeO₂-rod presented a stable conversion of approximately 82%. During the long-duration CH₂Br₂ oxidation test, the selectivity of product was nearly constant, revealing that the composition and structure of the active component was stable. In addition, there is a popular belief that the catalytic activity of Co-based catalyst is reduced due to the accumulation of Br species. XPS analysis (Fig. S4) indicated the deposition of only 1.2% Br on the surface of Co₃O₄/CeO₂-rod after 30 h of reaction, which might be ascribed to the fast reaction of Br species on the surface of Co₃O₄/CeO₂-rod. Moreover, Co₃O₄/CeO₂-plate and Co_3O_4/CeO_2 -cube also showed good catalytic stability. The results revealed that all of the three Co_3O_4/CeO_2 catalysts were stable for CH₂Br₂ oxidation.

The stability of Co_3O_4/CeO_2 -rod in the presence of 2 vol% water at 300 °C was also investigated. As shown in Fig. 10, the CH₂Br₂ conversion was always stabilized at approximately 82% within the first 3 h. Then, after the introduction of H₂O (2 vol%), an apparent decrease in CH₂Br₂ conversion from 82% to 62% occurred, revealing that H₂O showed a suppression effect on the catalytic reaction, on account of the competitive adsorption of CH₂Br₂ and H₂O on the active sites. The catalytic activity of Co₃O₄/CeO₂-rod was stabilized within 24 h. When H₂O was cut off, the CH₂Br₂ conversion basically regained its value of 82%. The results revealed that the catalytic activity of Co₃O₄/CeO₂-rod was sustainable and showed good resistance to water-penetration.

3.6. In situ DRIFTS studies

To get a deep insight into the catalytic behaviors of CeO₂ and Co₃O₄/CeO₂ catalysts, in situ DRIFTS experiments were carried out, and the results are displayed in Fig. 11. As can be seen in Fig. 11(a, b), for CeO₂-rod, after treated in the mixture of 500 ppm CH₂Br₂, 10% O₂, and N₂ at 50 °C for 1 h, the DRIFTS spectra exhibited bands at 3070, 2985, 1595, 1560, and 1198 cm⁻¹. The bands at 3070, 2985, and 1198 cm⁻¹ were assigned to antisymmetric stretching, symmetric stretching, and wagging of methylene species (-CH₂-), respectively, in CH₂Br₂ molecules [35]. When the temperature increased, these bands gradually decreased in intensities and could not be observed above 100 °C, revealing either desorption or reaction of CH₂Br₂ molecules. The band at 1560 cm^{-1} was ascribed to the formate species (–COOH) [7]. The band at 1595 cm⁻¹ was attributed to H₂O on the surface of CeO₂ [36], which was gradually removed when the temperature increased. In addition, the removal of the bands assigned to CH₂Br₂

molecules was along with the appearance of some new bands at 2933, 2876, 2850, 2819, 2719, 1539, 1369, and 1360 cm⁻¹. The bands at 2876, 2850, 2719, 1539, 1369, and 1360 cm⁻¹ (including 1527 and 1344 cm⁻¹ developed at 350 and 400 °C) were assigned to the formate species (–COOH) [3,37,38], while the other bands at 2933 and 2819 cm⁻¹ were related to methyl antisymmetric stretching and symmetric stretching of the methoxy species (–CH₃O), respectively [39]. All of the bands generated with the decomposition of the absorbed CH₂Br₂, revealing that the formate and methoxy species were the main intermediate products produced on the surface of CeO₂-rod.

On the basic of *in situ* DRIFTS experiments, a believable reaction pathway for CH_2Br_2 oxidation over CeO_2 is shown in Fig. S5. The reaction pathway is described as follows: (1) A CH_2Br_2 molecule is adsorbed on oxygen vacancies through two bromine atoms. (2) The two bromine atoms are extracted by the adjacent nucleophilic oxygen, forming bidentate methoxy species, which were not observed due to their instability. (3) Formate and methoxy species are formed by the Cannizzaro type disproportionation of bidentate methoxy species. (4) The formate and methoxy species are further oxidized by active oxygen species to produce CO and CO_2 .

In the case of Co_3O_4/CeO_2 -rod (Fig. 11(c, d)), the similar DRIFTS spectra were observed at 50, 100, 150, 200, and 250 °C, except that some bands assigned to the formate species disappeared and a new band was observed at 1489 cm⁻¹, assigned to scissoring of methylene species ($-CH_2-$) [39], which revealed that the reaction pathway was not fundamentally changed by the addition of Co. When the temperature increased, the band intensity was decreased obviously at 250 °C and complete disappeared at 300 °C. The results revealed that the presence of Co further promoted the decomposition of intermediate species at high temperatures. Furthermore, no bands corresponding to CO, CO₂, and HBr as the final products could be observed, due to the quick desorption of these species.

For Co₃O₄/CeO₂ catalysts, the dissociation of C-Br and C-H bonds was easier on account of the electrophilicity and high valence of Co₃O₄, and the high catalytic activity was ascribed to the strong interaction between Co₃O₄ and CeO₂. In the process of reaction, Co³⁺ was reduced to Co²⁺, after which the lattice oxygen of CeO₂ transferred to Co to reoxidize Co^{2+} to Co^{3+} . At the same time, CeO₂ released lattice oxygen that could be quickly reoxidized by gas-phase oxygen due to its excellent oxygen storage capacity. To get a deeper understanding of the reaction, a credible reaction mechanism for CH₂Br₂ oxidation over Co₃O₄/CeO₂ catalysts, consisting of five steps, is schematized in Fig. 12: (1) A CH₂Br₂ molecule is adsorbed on oxygen vacancies through two bromine atoms. (2) The two bromine atoms are extracted by the adjacent nucleophilic oxygen, forming bidentate methoxy species, which were not observed due to their instability. (3) The gas-phase oxygen is adsorbed on the catalyst surface to supplement the con-

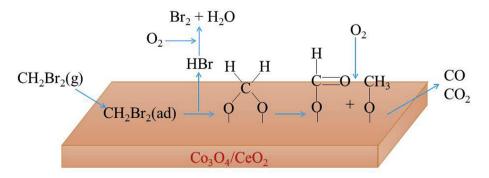


Fig. 12. A credible reaction mechanism for CH₂Br₂ oxidation over Co₃O₄/CeO₂ catalysts.

sumed oxygen. (4) Formate and methoxy species are formed by the Cannizzaro type disproportionation of bidentate methoxy species. (5) Formate and methoxy species are further oxidized by active oxygen species to generate CO and CO₂. Additionally, the Br species are quickly removed from the Co_3O_4/CeO_2 surface in the form of Br₂ by the Deacon reaction (4HBr + O₂ = 2Br + HBr), or in the form of HBr by the chemical reaction of the dissociatively adsorbed Br and surface hydroxyl groups.

4. Conclusions

Three Co_3O_4/CeO_2 catalysts with different CeO₂ morphologies (rod, plate, and cube) were prepared by the hydrothermal and impregnation methods, and the morphology effect of CeO₂ on the catalytic performance of Co₃O₄/CeO₂ catalysts for CH₂Br₂ oxidation, used as the model compound for brominated hydrocarbons, was investigated. Among the three Co_3O_4/CeO_2 catalysts, $Co_3O_4/$ CeO₂-rod achieved significantly higher catalytic activity, with a T-90 of approximately 312 °C for CH₂Br₂ oxidation and higher selectivity to CO₂ than CO₃O₄/CeO₂-plate and CO₃O₄/CeO₂-cube. The HRTEM images revealed that the Co₃O₄/CeO₂-rod predominately exposed {100} and {110} planes. Based on the results of Raman and XPS, the Co, Ce valences, surface oxygen species, and oxygen vacancies were dependent on morphology. The high catalytic activity of Co₃O₄/CeO₂-rod was attributed to the high content of Co³⁺, more surface-adsorbed oxygen, and more oxygen vacancies related to their exposed {100} and {110} planes. In addition, Co₃O₄ had a strong interaction with CeO₂-rod, making it superior for CH₂Br₂ oxidation. The results of long-duration stability experiments confirmed that Co₃O₄/CeO₂-rod could be considered as an excellent catalyst for CH₂Br₂ oxidation. Moreover, on the basis of the analysis of products and in situ DRIFTS studies, a credible reaction mechanism for CH₂Br₂ oxidation over Co₃O₄/CeO₂ catalysts was proposed.

Acknowledgements

This work was supported by the Major State Basic Research Development Program of China (973 Program, No. 2013CB430005), the National Natural Science Foundation of China (No. 51278294 and 21607102), and China's Post-doctoral Science Fun (No. 2015M581626).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.cej.2017.03.038.

References

- [1] L. Ren, Y. Li, J. Hou, J. Bai, M. Mao, M. Zeng, X. Zhao, N. Li, The pivotal effect of the interaction between reactant and anatase TiO2 nanosheets with exposed 001 facets on photocatalysis for the photocatalytic purification of VOCs, Appl. Catal. B 181 (2016) 625–634.
- [2] A. Tang, L. Hu, X. Yang, Y. Jia, Y. Zhang, Promoting effect of the addition of Ce and Fe on manganese oxide catalyst for 1, 2-dichlorobenzene catalytic combustion, Catal. Commun. 82 (2016) 41–45.
- [3] J. Mei, S. Zhao, W. Huang, Z. Qu, N. Yan, Mn-Promoted Co₃O₄/TiO₂ as an efficient catalyst for catalytic oxidation of dibromomethane CH₂Br₂, J. Hazard, Mater. 318 (2016) 1–8.
- [4] M. Moreton, Catalytic oxidation for PTA plant emissions control, Int. J. Hydrocarbon Eng. 3 (1998) 57–58.
- [5] X.-X. Hao, H.-Z. Wang, X.-N. Wang, X. Wang, Z.-S. Liu, Overview of PTA off-gas treatment techniques, Contemp. Chem. Ind. 2 (2013) 020.
- [6] X. Liu, J. Zeng, J. Wang, W. Shi, T. Zhu, Catalytic oxidation of methyl bromide using ruthenium-based catalysts, Catal. Sci. Technol. 6 (2016) 4337–4344.
- [7] J. Mei, S. Zhao, H. Xu, Z. Qu, N. Yan, The performance and mechanism for the catalytic oxidation of dibromomethane (CH₂Br₂) over Co₃O₄/TiO₂ catalysts, RSC Adv. 6 (2016) 31181–31190.

- [8] P.S. Barbato, S. Colussi, A. Di Benedetto, G. Landi, L. Lisi, J. Llorca, A. Trovarelli, On the origin of high activity and selectivity of CuO/CeO₂ catalysts prepared by solution combustion synthesis in CO-PROX reaction, J. Phys. Chem. C 120 (2016) 13039–13048.
- [9] A.M. Abdel-Mageed, G. Kučerová, A.A. El-Moemen, J. Bansmann, D. Widmann, R.J. Behm, Geometric and electronic structure of Au on Au/CeO₂ catalysts during the CO oxidation: deactivation by reaction induced particle growth, J. Phys: Conf. Ser. 712 (2016) 012044.
- [10] J.X. Feng, S.H. Ye, H. Xu, Y.X. Tong, G.R. Li, Design and synthesis of FeOOH/CeO₂ heterolayered nanotube electrocatalysts for the oxygen evolution reaction, Adv. Mater. 28 (2016) 4698–4703.
- [11] P. Sudarsanam, B. Hillary, B. Mallesham, B.G. Rao, M.H. Amin, A. Nafady, A.M. Alsalme, B.M. Reddy, S.K. Bhargava, Designing CuOx nanoparticle-decorated CeO₂ nanocubes for catalytic soot oxidation: role of the nanointerface in the catalytic performance of heterostructured nanomaterials, Langmuir 32 (2016) 2208–2215.
- [12] F. Wang, S. He, H. Chen, B. Wang, L. Zheng, M. Wei, D.G. Evans, X. Duan, Active site-dependent reaction mechanism over Ru/CeO₂ catalyst toward CO₂ methanation, J. Am. Chem. Soc. 138 (2016) 6298–6305.
- [13] B.C. Shin, Ho Hwan, Jin-Sun Cha, Min-Chul Shin, Heesoo Lee, Physico-chemical property and catalytic activity of a CeO₂-Doped MnOx-TiO₂ Catalyst with SO₂ resistance for low-temperature NH₃-SCR of NOx, J. Nanosci. Nanotechnol. 16 (2016) 4370–4376.
- [14] A. Ramli, M.F. Mohamad, S. Yusup, T.Y.Y. Hin, Hydrogen production from gasification of palm kernel shell in the presence of Fe/CeO₂ catalysts, Malaysian J. Anal. Sci. 20 (2016) 303–308.
- [15] W. Huang, Y. Gao, Morphology-dependent surface chemistry and catalysis of CeO₂ nanocrystals, Catal. Sci. Technol. 4 (2014) 3772–3784.
- [16] X. Du, D. Zhang, L. Shi, R. Gao, J. Zhang, Morphology dependence of catalytic properties of Ni/CeO₂ nanostructures for carbon dioxide reforming of methane, J. Phys. Chem. C 116 (2012) 10009–10016.
- [17] Z. Liu, S. Guo, C. Hong, Z. Xia, Synthesis and photocatalytic properties of CeO₂ nanocubes, J. Mater. Sci.: Mater. Electron. 27 (2016) 2146–2150.
- [18] N. Wang, W. Qian, W. Chu, F. Wei, Crystal-plane effect of nanoscale CeO₂ on the catalytic performance of Ni/CeO₂ catalysts for methane dry reforming, Catal. Sci. Technol. 6 (2016) 3594–3605.
- [19] X. Guo, R. Zhou, A new insight into the morphology effect of ceria on CuO/CeO₂ catalysts for CO selective oxidation in hydrogen-rich gas, Catal. Sci. Technol. 6 (2016) 3862–3871.
- [20] Q. Guo, W.U. Meiling, Y. Liu, X. Bai, Mesoporous CeO₂-supported Co₃O₄ catalysts for CO preferential oxidation in H₂ rich gases, Chin. J. Catal. 28 (2007) 953–957.
- [21] J.J. Tian, W. Na, H. Wang, W.G. Gao, Low temperature CO oxidation over cobalt catalysts supported on mesoporous CeO₂, Adv. Mater. Res. 643 (2013) 76–82.
- [22] S.A. Mock, S.E. Sharp, T.R. Stoner, M.J. Radetic, E.T. Zell, R. Wang, CeO₂ nanorods-supported transition metal catalysts for CO oxidation, J. Colloid Interface Sci. 466 (2016) 261–267.
- [23] S. Darbha, Direct synthesis of dimethyl carbonate from CO₂ and methanol over CeO₂ catalysts of different morphologies, J. Chem. Sci. 128 (2016) 957–965.
- [24] S. Fernandez-Garcia, L. Jiang, M. Tinoco, A.B. Hungria, J. Han, G. Blanco, J.J. Calvino, X. Chen, Enhanced hydroxyl radical scavenging activity by doping lanthanum in ceria nanocubes, J. Phys. Chem. C 120 (2016) 1891–1901.
- [25] X. Niu, M. Li, B. Hao, H. Li, Hydrothermal synthesis of 3D hierarchical porous CeO₂ rugby-ball-like nanostructures with nanorods as building blocks, J. Mater. Sci.: Mater. Electron. 27 (2016) 6845–6848.
- [26] B. Jia, M. Qin, S. Li, Z. Zhang, H. Lu, P. Chen, H. Wu, X. Lu, L. Zhang, X. Qu, The synthesis of mesoporous single crystal Co(OH)₂ nanoplate and its topotactic conversion to dual-pore mesoporous single crystal Co₃O₄, ACS Appl. Mater. Interfaces 8 (2016) 15582–15590.
- [27] J.Y. Luo, M. Ming, L. Xiang, X.G. Li, Y.Q. Zha, T.D. Hu, Y.N. Xie, Z. Jing, Mesoporous Co₃O₄-CeO₂ and Pd/Co₃O₄-CeO₂ catalysts: synthesis, characterization and mechanistic study of their catalytic properties for lowtemperature CO oxidation, J. Catal. 254 (2008) 310–324.
- [28] D.M.G. José, M. Gatica, Juan C. Hernández-Garrido, José J. Calvino, Gustavo A. Cifredo, Hilario Vidal, Experimental evidences of the relationship between reducibility and micro- and nanostructure in commercial high surface area ceria, Appl. Catal. A: General 479 (2014) 35–44.
- [29] R. Shang, Y. Duan, X. Zhong, W. Xie, Y. Luo, L. Huang, Formic acid modified Co₃O₄-CeO₂ catalysts for CO oxidation, Catalysts 6 (2016) 48.
- [30] A. Gupta, U. Waghmare, M. Hegde, Correlation of oxygen storage capacity and structural distortion in transition-metal-, noble-metal-, and rare-earth-ionsubstituted CeO₂ from first principles calculation, Chem. Mater. 22 (2010) 5184–5198.
- [31] L.-L. Huang, Y. Mao, G. Wang, X. Xia, J. Xie, S. Zhang, G. Du, G. Cao, X. Zhao, Ru-decorated knitted Co₃O₄ nanowires as robust carbon/binder-free catalytic cathode for lithium-oxygen batteries, New J. Chem. 40 (2016) 6812–6818.
- [32] G. Pantaleo, V. La Parola, F. Deganello, R. Singha, R. Bal, A. Venezia, Ni/CeO₂ catalysts for methane partial oxidation: synthesis driven structural and catalytic effects, Appl. Catal. B 189 (2016) 233–241.
- [33] X. Liu, K. Zhou, L. Wang, B. Wang, Y. Li, Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods, J. Am. Chem. Soc. 131 (2009) 3140– 3141.

- [34] X. Liang, P. Liu, H. He, G. Wei, T. Chen, W. Tan, F. Tan, J. Zhu, R. Zhu, The variation of cationic microstructure in Mn-doped spinel ferrite during calcination and its effect on formaldehyde catalytic oxidation, J. Hazard. Mater. 306 (2016) 305–312.
- [35] M.-T. Chen, C.-F. Lien, L.-F. Liao, J.-L. Lin, In-situ FTIR study of adsorption and photoreactions of CH₂Cl₂ on powdered TiO₂, J. Phys. Chem. B 107 (2003) 3837– 3843.
- [36] I.A. Fisher, A.T. Bell, In-Situ infrared study of methanol synthesis from H₂/CO₂ over Cu/SiO₂ and Cu/ZrO₂/SiO₂, J. Catal. 172 (1997) 222–237.
- [37] R. Yang, Y. Fu, Y. Zhang, N. Tsubaki, In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO₂-containing syngas using ethanol promoter, J. Catal. 228 (2004) 23–35.
 [38] C.-C. Chuang, W.-C. Wu, M.-C. Huang, I.-C. Huang, J.-L. Lin, FTIR study of International synthesis and the synthesis of the synthesynthesis of th
- [38] C.-C. Chuang, W.-C. Wu, M.-C. Huang, I.-C. Huang, J.-L. Lin, FTIR study of adsorption and reactions of methyl formate on powdered TiO₂, J. Catal. 185 (1999) 423–434.
- [39] W.-C. Wu, C.-C. Chuang, J.-L. Lin, Bonding geometry and reactivity of methoxy and ethoxy groups adsorbed on powdered TiO₂, J. Phys. Chem. B 104 (2000) 8719–8724.