Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Elemental mercury (Hg⁰) removal over spinel LiMn₂O₄ from coal-fired flue gas

^a School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
^b School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
^c School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

HIGHLIGHTS

• Spinel LiMn₂O₄ was used as heterogeneous catalyst.

• LiMn₂O₄ had higher Hg⁰ removal efficiency than Mn₂O₃ and Li₂O-Mn₂O₃.

• The mechanisms for Hg^0 removal over spinel LiMn₂O₄ were discussed.

ARTICLE INFO

Article history: Received 17 February 2016 Received in revised form 18 April 2016 Accepted 19 April 2016 Available online 22 April 2016

Keywords: Elemental mercury Manganese oxides Lithium Spinel oxide

ABSTRACT

Spinel LiMn₂O₄ was prepared using a sol-gel method to investigate gaseous elemental mercury (Hg⁰) removal performance from coal-fired power plants. The physical and chemical characterization results indicated that LiMn₂O₄ had a basic MnO₆ unit and Li ions in the spinel λ -MnO₂ structure. LiMn₂O₄ exhibited better Hg⁰ removal performance than that of pure Mn₂O₃ and mixed oxides of Li₂O-Mn₂O₃. Hg⁰ removal efficiency of LiMn₂O₄ was 93.09% (600 min reaction) at an optimum temperature of 150 °C. Higher temperature (>200 °C) was not favorable for Hg⁰ removal. O₂ enhanced the Hg⁰ removal efficiency of LiMn₂O₄ and H₂O inhibited the reaction, and the co-existence of them had a poison effect on Hg⁰ removal. The primary Hg⁰ removal mechanism was chemical-adsorption, Hg⁰ was firstly catalytic oxidized to Hg²⁺ along with the reduction of high valance of Mn (Mn⁴⁺/Mn³⁺) to low valance (Mn³⁺/Mn²⁺). Hg²⁺ was combined with adsorbed oxygen and existed as Hg–O on LiMn₂O₄ surface. The existence of Li ions constructs a λ -MnO₂ structure and benefits the oxidation process. Furthermore, based on the Hg-TPD results, the desorption activation energy was 58.82 kJ/mol.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Elemental mercury (Hg⁰) emitted from coal-fired power plants is hazardous in the atmosphere [1]. Up to now, many approaches had been developed to control the emission of Hg⁰ [2–6]. According to the Hg⁰ removal mechanism, it can be classified to two Hg⁰ control methods: (1) catalytic oxidation of Hg⁰ to oxidized mercury (Hg²⁺) and (2) adsorption of Hg⁰ by sorbents. Although the Hg²⁺ in the flue gas can be removed by wet flue gas desulfurization (WFGD) devices, mercury enriched in the slurry could cause mercury secondary contamination [7]. However, the adsorption of Hg⁰ on the sorbents was not stable by physical-adsorption [8]. Enhancement of catalytic oxidation of Hg⁰ to Hg²⁺, followed by chemical-adsorption was a potential method for the efficient mercury control.

Among various Hg^0 catalysts or sorbents, manganese-based oxides (MnO_x) were potential materials due to their higher redox potential, low cost and environmental friendliness. Bulk metal oxides have long been an interest as heterogeneous catalytic oxidation catalysts. To enhance Hg^0 removal performances of MnO_x , lots of manganese-based oxides have been developed and evaluated in the laboratory. Ce– MnO_x [9,10], Sn– MnO_x [11], Fe– MnO_x [11,12] and other binary metal oxides were synthesized to enlarge Hg^0 adsorption capacities, to enlarge reaction temperature window and to enhance SO_2 resistance performance, etc. It was accepted that the Hg^0 removal mechanism can be described as follows: Hg^0 first adsorbed on the surface of MnO_x , followed the catalytic oxidation by high valance of $Mn (Mn^{4+}/Mn^{3+})$, after that the oxidized mercury combined with adsorbed oxygen to form Hg-O species. The primary Hg^0 removal process was ascribed to a

Chemical Enaineerina

Journal

^{*} Corresponding author. Tel./fax: +86 21 54745591. E-mail address: nqyan@sjtu.edu.cn (N. Yan).

chemical-adsorption process. During this process, the higher surface area, sufficient adsorbed oxygen and higher valance state of Mn are beneficial for Hg⁰ removal.

MnO_x occur naturally as minerals in at least 30 different crystal structures. Our recent studies found that the crystal structures of MnO₂ significantly affects Hg⁰ catalytic oxidation and adsorption [13]. The Hg⁰ removal performance over α -, β - and γ -MnO₂ has an order of α -MnO₂ > γ -MnO₂ $\geq \beta$ -MnO₂. It has been acknowledged that high crystallinity would increase the stability and enhance the catalytic performance. Mn-based perovskite oxides have indicated to have high gas-phase heterogeneous catalytic oxidation performance [14,15]. Moreover, among Mn-based perovskite oxides, LaMnO₃ had superior catalytic removal performance for Hg⁰ [16,17]. The effects of crystal structure of manganese oxides on the catalysis activity showed be further developed.

Spinel LiMn₂O₄ was an interesting cathode material for lithiumion batteries due to its low cost, low toxicity and high voltage [18]. LiMn₂O₄ exhibited three-dimensional frameworks, comprising MnO₆ octahedral units and coexisting Li ions. In general, Li ions can be fully extracted from the spinel framework of LiMn₂O₄ to produce a spinel-type λ -MnO₂ that LiMn₂O₄ often acted as Li⁺ ion selective adsorbent. And it has been reported that LiMn₂O₄ had a water oxidation performance because the role of λ -MnO₂ [19,20]. However, to our knowledge, there were still no reports about using spinel LiMn₂O₄ for the gas-phase heterogeneous catalytic oxidation.

In this study, $LiMn_2O_4$ was synthesized to investigate the Hg⁰ removal performance. The BET, XRD, Raman, H₂-TPR and XPS were employed for the chemical and physical characterization. The Hg⁰ removal performance was evaluated in a fixed-bed adsorption system. The effects of gas components and the mechanism for Hg⁰ removal was discussed. Furthermore, the mercury release performance was evaluated and the desorption energy was calculated.

2. Experimental section

2.1. Materials preparation

LiMn₂O₄ was synthesized according to the citrate complexation procedure. Stoichiometric amounts of the metallic nitrates (LiNO₃ and Mn(NO₃)₃) were firstly dissolved in the distilled water. Thereafter, an aqueous solution of citric acid (CA), was slowly added to the precursor solution under gentle stirring. The molar ratio of Li:Mn:CA was 1:1:2. Solvent evaporation was performed at 80 °C until the formation of gel. After vigorous stirring and evaporation, a transparent gel was formed, which was dried at 100 °C overnight. The obtained precursor was calcined at 300 °C for 1 h in air to completely decompose citric acid followed by calcination at 500 °C for 5 h at a rate of 10 °C/min. Mn₂O₃ and Li₂O were also synthesized according to the same sol–gel method. Additionally, the physical mixed oxides of Li₂O–Mn₂O₃ were synthesized for comparison.

2.2. Materials characterization

X-ray diffraction (XRD) was carried out using X-ray diffractometer equipped with a Cu–K α radiation (APLX-DUO, BRUKER, Germany). Diffractograms were collected in the 2θ range from 10° to 80° with a scanning velocity of 5°/min. Raman spectroscopy was used for the determination of the crystallinity degree of the materials. The analyses were performed in a SENTERRA R200 microscope. The 633 nm line of Ar⁺ laser was used for the excitation. The multipoint Brunauer–Emmett–Teller (BET) surface areas and pore analysis were performed using a N₂ sorption measurement (Nova-2200e) at 77 K. The pore size and pore volume were

calculated based on the Barrett–Joyner–Halenda (BJH) method. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface characteristics of as-prepared materials. The XPS system contained an AXIS Ultra DLD (Shimadzu–Kratos) spectrometer with Al–K α as the excitation source. The C 1 s line at 284.6 eV was taken as a reference for the binding energy calibration. The reducibility of the samples was determined using H₂-TPR experiments, and these experiments were performed on a Chemisorp TPx 290 instrument. The samples were degassed at 200 °C for 3 h under an Ar atmosphere prior to the tests, and the reducing gas consisted of 10% H₂/Ar.

A mercury-temperature programmed desorption (Hg-TPD) method was employed to investigate the regeneration characteristics of the as-prepared materials. After mercury adsorption at 150 °C with 4% O₂ for 30 min, the sorbents were regenerated by heating from 100 to 700 °C in a pure N₂ carrier gas. Hg-TPD curves under different heating rates (2 °C/min, 5 °C/min and 10 °C/min) on the LiMn₂O₄ surfaces were collected. The desorption activation energy was also calculated according to the results.

2.3. Hg⁰ fix-bed adsorption

A lab-scale fixed-bed adsorption system was assembled, as shown in Fig. 1, to explore the uptake capacity of Hg⁰ by the asprepared materials. The experimental method was similar to our previous studies [21]. The fixed-bed reactor was constructed to allow for a total gas flow of 500 ml/min. Temperature control devices were installed to control the mixed gas and the reactor temperature. The reaction temperatures range from 100 to 300 °C. 20 mg of as-prepared materials were used for each experiment and it was put in a quartz tube with a diameter of 4 cm. During the Hg⁰ removal experiments, the mercury inlet gas bypassed the as-prepared material and then passed into the analytical system until the desired inlet mercury concentration was established. The mercury analyzer was CVASS in this study. Before each test, the Hg⁰ concentration was adjusted by Lumex RA 915. In addition, active carbon was used for the off-gas cleaning. It can adsorb the mercury (Hg²⁺ and Hg⁰) in the flue gas. KMnO₄ was used for adsorbed the oxidized mercury.

To investigate the effect of temperature on the flue gas, the area under the breakthrough curves corresponding to Hg^0 on the prepared sorbents during the test time was integrated. To investigate the effects of various gas components, 4% O₂, 500 ppm SO₂ and 4% H₂O were chosen when needed. These gases were firstly get through a mixed gas tank.

The Hg⁰ removal efficiency was calculated according to Eq. (1): 在此处键入公式。

$$x \text{Hg} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\text{Hg}^0 \text{ removal efficiency} = \frac{\text{Hg}_{\text{in}}^0 - \text{Hg}_{\text{out}}^0}{\text{Hg}_{\text{in}}^0}$$
(1)

where Hg_{in}^0 was the inlet concentration of Hg^0 , and Hg_{out}^0 was the outlet concentration of Hg^0 .

3. Results and discussion

3.1. Physicochemical properties

Fig. 2 presented X-ray diffraction (XRD) patterns of the asprepared samples. The XRD patterns of Li₂O, Mn₂O₃ LiMn₂O₄ and Li₂O-Mn₂O₃ samples was collected. For Li₂O, it existed in an amorphous phase. The peaks in the pure manganese oxide was ascribed

Fig. 1. Process flow diagram for mercury removal assessment.

to Mn_2O_3 in accordance with PDF card of No. 24-0508. For LiMn₂-O₄, the peaks at 18°, 35°, 43°, 58°, 63° and 67° were well-defined structure in good agreement with spinel LiMn₂O₄ with PDF card of No. 35-0782 [22]. There were no other phases in the patterns of LiMn₂O₄. It indicated that the spinel LiMn₂O₄ was successfully synthesized. For comparison, the XRD pattern of Li₂O-Mn₂O₃ mixed oxide was collected. Interestingly, Li₂O-Mn₂O₃ has mixed phases of Mn₂O₃ and spinel LiMn₂O₄. There were no patterns can be ascribed to Li₂O. It could be speculated that the flexible Li⁺ ions could enter into manganese oxide to form LiMn₂O₄, and residual Mn₂O₃ still remain its own crystal phase.

To further investigate the structural features of as-prepared samples, Raman spectra was employed and the results are shown in Fig. 3. In the spinel LiMn₂O₄, it had a wide peak centered at 641 cm⁻¹, it was the characteristic of vibrations involving motion of oxygen atoms inside the octahedral MnO₆ unit. The basic structure of manganese oxides was MnO₆ octahedral unit, and that the Raman shift was at about 600–700 cm⁻¹ [23,24]. The vibrations were detected at 689 and 615 cm⁻¹ for Mn₂O₃ and Li₂O–Mn₂O₃, respectively. However, the intensity of LiMn₂O₄ was stronger than that of Mn₂O₃ and Li₂O–Mn₂O₃, which indicated a better

Fig. 2. XRD patterns of as-prepared samples.

Fig. 3. Raman spectra of as-prepared samples.

crystallization. The bands of LiMn₂O₄ and Li₂O–Mn₂O₃ broadened and down-shifted when the particles became smaller. For instance, the distinct features at 689 cm⁻¹ for bulk Mn₂O₃ shifted to 641 cm⁻¹ for LiMn₂O₄, accompanied by broadening of the bands. The formation of Li₂O–Mn₂O₃ had smaller particle size than LiMn₂O₄.

As presented in Table 1, the BET surface areas and pore properties of the as-prepared materials were analyzed. Mn_2O_3 had a small BET surface area of $11.2 \text{ m}^2/\text{g}$. It is smaller than that of Li_2O $(40.1 \text{ m}^2/\text{g})$. For $\text{Li}Mn_2O_4$, the BET surface area $(41.2 \text{ m}^2/\text{g})$ which was much larger than that of Mn_2O_3 . The pore size of $\text{Li}Mn_2O_4$ and Mn_2O_3 were 3.618 and 3.825 nm, respectively. However, the pore volume of $\text{Li}Mn_2O_4$ was three times larger than that of Mn_2O_3 . The sufficient pores in $\text{Li}Mn_2O_4$ resulted in the higher surface area. In addition, $\text{Li}_2O-Mn_2O_3$ had the largest BET surface area $(53.2 \text{ m}^2/\text{g})$ among the as-prepared samples. The physical mixed oxides had large pore volume which was $0.812 \text{ m}^3/\text{g}$. After Li⁺ ions entered into the basic octahedral MnO_6 unit, the surface area of prepared Mn-based material was enlarged.

The chemical compositions of $LiMn_2O_4$ were analyzed by X-ray photoelectron spectra (XPS). As XPS spectra shown in Fig. 4(a), in the region of O 1 s, Li₂O had only one peak at 531.3 eV, the high

 Table 1

 BET surface area, BJH pore properties and XPS analysis of as-prepared materials.

Materials	BET surface area (m ² /g)	Pore volume (m ³ /g)	Pore size (nm)	0 (%)		Mn (%)	
				O _{ads}	O _{latt}	Mn ⁴⁺	Mn ³⁺
Li ₂ O	40.1	0.073	3.825	100	-	-	-
Mn_2O_3	11.2	0.051	3.301	44.24	55.76	-	100
LiMn ₂ O ₄	41.2	0.154	3.618	39.32	60.68	21.88	78.12
$Li_2O-Mn_2O_3$	53.2	0.812	3.646	55.92	44.08	-	100

Fig. 4. XPS profiles for LiMn₂O₄, Mn₂O₃, Li₂O and Li₂O-Mn₂O₃.

binding energy of such oxygen indicated the instability of Li₂O. For Mn_2O_3 , two peaks at 531.4 and 530.7 eV were corresponded to the surface adsorbed oxygen (O_{ads}) and lattice oxygen (O_{latt}), respectively [21]. Similarly, LiMn₂O₄ and Li₂O–Mn₂O₃ had these two character peaks which can be ascribed to O_{ads} and O_{latt} . However, the ratio of O_{ads}/O_{latt} was quite a different. From the results listed in Table 1, the ratio of O_{ads}/O_{latt} for Mn₂O₃ and LiMn₂O₄ were 44.24/55.76 and 39.32/60.68, respectively. Li₂O–Mn₂O₃ had the highest ratio of 55.92/45.08. It had been proven that O_{ads} was the adsorption site for the oxidized mercury. The higher concentration of surface adsorbed oxygen was due to the mobility of Li ions. Li ions entered into Mn₂O₃ and formed spinel LiMn₂O₄, resulted in the residual oxygen on its surface.

As shown in Fig. 4(b), in the spectra of Mn 2p, for LiMn₂O₄, the peaks at 644.5 and 642.3 eV were corresponded to Mn^{4+} and Mn^{3+} , respectively. The ratio of Mn^{4+}/Mn^{3+} was 21.88/78.12. for

 Mn_2O_3 , the peaks detected at 642.6 eV was ascribed to Mn^{3+} . Li₂O- Mn_2O_3 had one peak at 642.6 eV and it was ascribed to Mn^{3+} . The spinel Li Mn_2O_4 had higher valance of Mn which was due to the unstable of Li⁺ in Li Mn_2O_4 . Generally, with the addition of Li ions in the manganese oxides, the reaction of " $2Mn^{3+} = -Mn^{4+} + Mn^{2+*}$ occurred. Therefore, the binding energy of Mn^{3+} for Li Mn_2O_4 was lower than that of Mn_2O_3 . Li ions ascend the valance of Mn in Li Mn_2O_4 which was beneficial for catalytic oxidation.

In the region of Li 1 s, as shown in Fig. 4(c), for Li₂O, the line has a binding energy centered at 55.1 eV, the low binding energy indicated that Li has low electron binding capacity. But for LiMn₂O₄ and Li₂O-Mn₂O₃, they presented two peaks on their spectra. One small peak at 55.1 eV and another primary peak at approximately 50.0 eV. The co-existence of Li and Mn resulted in the higher mobility of Li ions in the spinel LiMn₂O₄ structure. Based on the above discussion, LiMn₂O₄ was synthesized using simple sol-gel method, it existed a basic spinel structure. With the addition of Li ions in the Mn-base structure, the surface area was enlarged and the valance of Mn was increased.

3.2. Hg⁰ removal performances over LiMn₂O₄

3.2.1. Hg⁰ removal efficiencies over as-prepared samples

The Hg⁰ removal performances over the as-prepared materials were tested, and the results are shown in Fig. 5. Obviously, Li₂O had nearly no activity for Hg⁰. Mn₂O₃ had 90% Hg⁰ removal efficiency in the initial 100 min. But it gradually lost its activity for Hg⁰, it had only approximately 23% Hg⁰ removal efficiency after 600 min reaction. For LiMn₂O₄, it presented excellent performance for Hg⁰ removal, the Hg⁰ removal efficiency was higher than 99% even after 600 min reaction. LiMn₂O₄ showed guite a different performance compared to that of Mn₂O₃. In order to further indenfy the effect of crystal structure, the performance of the mixed oxide $(Li_2O-Mn_2O_3)$ was investigated. The Hg⁰ removal performance was not as well as $LiMn_2O_4$, even was worse than Mn_2O_3 . The Hg⁰ removal efficiency drop rapidly, and the Hg⁰ removal efficiency was only approximately 30% after 600 min reaction. As discussed above, the mixed oxide of Li₂O-Mn₂O₃ had largest surface area among the as-tested materials, and it had a mixed phase of Mn₂O₃ and spinel LiMn₂O₄. However, it didn't showed a better performance for Hg⁰ removal. The bulk partiles of Li₂O-Mn₂O₃ resulted in the larger pore volume and surface area. However, the primary Mn active sites was occupied and the catalytic effect of LiMn₂O₄ can't exhibit. The results confirmed that spinel LiMn₂-O₄ was favorable for Hg⁰ removal.

3.2.2. Effect of temperature on Hg^0 removal efficiencies over $LiMn_2O_4$

The effect of reaction temperature on Hg^0 removal efficiencies over LiMn₂O₄ were investigated at a wide reaction temperature window (100–300 °C). For comparison, the performances of Mn₂O₃ and Li₂O–Mn₂O₃ were also investigated. The Hg^0 removal efficiencies were calculated based on the total 600 min reaction. As shown in Fig. 6, LiMn₂O₄ had higher than 90% removal efficiencies at 100 and 150 °C, and the highest removal efficiency was 93.09% at 150 °C. However, the Hg^0 removal efficiencies decreased sharply as the reaction temperature increased to 200 °C, it had only 52.4% Hg^0 removal efficiency. As the temperature rising, the Hg^0 removal efficiencies further decreased. For Mn₂O₃, the highest Hg^0 removal efficiency was 80.1% at 100 °C. The Hg^0 removal effi-

Fig. 5. Hg⁰ removal efficiencies over different materials.

Fig. 6. Effect of temperature on Hg⁰ removal efficiencies.

Fig. 7. Effect of O_2 , SO_2 and H_2O on Hg^0 removal efficiencies. (b) N_2 , (b) $4\% O_2$, (c) $8\% O_2$, (d) $500 \text{ ppm } SO_2 + 4\% O_2$, (e) $4\% H_2O + 4\% O_2$ and (f) $500 \text{ ppm } SO_2 + 4\% H_2O + 4\% O_2$.

ciency decreased sharply as the temperature increased, and it had only approximately 32% $\rm Hg^0$ removal efficiency when the temperature was 300 °C. The mixed oxide $\rm Li_2O-Mn_2O_3$ had approximately 40% $\rm Hg^0$ removal efficiencies at 100–150 °C. And the $\rm Hg^0$ removal efficiencies were decreased as the temperature rising. Obviously, as-prepared Mn-based material lost their activities when the temperature was higher than 200 °C, $\rm LiMn_2O_4$ had the best performance at 150 °C. The material can be used downstream of the electrostatic precipitator/fan filter (ESP/FF) units in a coal-fired power plant.

3.2.3. Effect of O_2 , SO_2 and H_2O on Hg^0 removal efficiencies over $LiMn_2O_4$

Furthermore, the effects of gas components on Hg^0 removal efficiencies over $LiMn_2O_4$ were investigated and the results are presented in Fig. 7. In the absence of O_2 , Hg^0 removal efficiency was 79.1%, which is the average removal efficiency of total 600 min. When the simulated gas had 4% O_2 , the Hg^0 removal performance was enhanced, the calculated Hg^0 removal efficiency was 93.09%. To further investigate the effect of O_2 on Hg^0 removal, 8% O_2 was added in the simulated gas, the Hg^0 removal efficiency was increased to 95.45%. Obviously, O_2 was favorable for Hg^0 removal and it was in accordance with previous studies [21,25]. The effect of H_2O and SO_2 were also investigated. In the presence of

Fig. 8. H₂-TPR profiles of as-prepared samples.

500 ppm SO₂ + 4% O₂, the Hg⁰ removal efficiency decreased to 81.35%. The Mn based materials suffer from the poison of SO₂, the sulfate generated on the surface, resulted in the inactivation of Mn active sites. When the gas component was 4% H₂O + 4% O₂, the Hg⁰ removal efficiency was only 51.98%. H₂O also had higher poison effect on Hg⁰ removal compared to that of SO₂. With 500 ppm SO₂ + 4% H₂O + 4% O₂, the Hg⁰ removal efficiency decreased to only 20.72%. The co-existence of SO₂ and H₂O had a severe poisoning effect on Hg⁰ removal.

3.3. Hg⁰ removal mechanism over LiMn₂O₄ spinel oxide

As discussed above, LiMn₂O₄ presented excellent performance for Hg⁰ removal. The large surface area and the special spinel structure was beneficial for Hg⁰ removal. The Hg⁰ removal mechanism was generally ascribed to catalytic oxidation and chemicaladsorption process. The reducibility of the as-prepared samples was analyzed using H2-temperature programmed reduction (H₂-TPR) (Fig. 8). For Mn₂O₃, two obvious peaks were detected at 232 and 442 °C, the peak at low temperature was ascribed to the reduction of surface oxygen and the peak at higher temperature were assigned to $Mn^{3+} \rightarrow Mn^{2+}$.[13] In the profile of Li₂O, there is a weak peak at high temperature of 564 °C and it can be ascribed to $Li^+ \rightarrow Li^0$. For LiMn₂O₄, three characteristic peaks were presented, the peaks at 386 and 465 °C could ascribed to $Mn^{4+} \rightarrow$ Mn^{3+} and $Mn^{3+} \rightarrow Mn^{2+}$, respectively. As the temperature rising, a peak at 572 °C can be ascribed to $Li^+ \rightarrow Li^0$. With the addition of Li ions in LiMn₂O₄, the valance of Mn was increased, resulted in the higher reducibility. For Li₂O-Mn₂O₃, it presented five character peaks in its profile, these peaks were ascribed to the reduction of $Mn^{4+} \rightarrow Mn^{3+}$, $Mn^{3+} \rightarrow Mn^{2+}$, $Li^{2+} \rightarrow Li^0$ and the interaction between Li and Mn ions (such as $Li^+ + Mn^{3+} \leftrightarrow Li^0 + Mn^{4+}$ and $Li^+ + Mn^{2+} \leftrightarrow Li^0 + Mn^{3+}$). Based on the H₂-TPR results, with the addition of Li, LiMn₂O₄ showed better reducibility than Mn₂O₃. The valance of Mn was increased based on the XPS results, and that the reduction of $Mn^{4+} + e^- \rightarrow Mn^{3+}$ offered an electrons for Hg^0 oxidation. The active Li⁺ can acted as a good electron acceptor in the process which benefited catalytic oxidation.

After adsorption, the XPS spectra were presented in Fig. 9. For O 1 s, the peaks at 531.2 and 530.0 eV were corresponded to O_{ads} and

Fig. 9. XPS spectra of after adsorption LiMn₂O₄.

Fig. 10. Hg-TPD curves of LiMn₂O₄ at different heating rates.

 O_{latt} . The ratio of O_{ads}/O_{latt} was 55.32/44.68. The ratio was a slight increase compared to that of the fresh sample. This could be the reason that LiMn₂O₄ had oxygen adsorption performance. For the spectrum of Mn 2p, the peaks at 645.0 and 642.3 eV were corresponded to Mn⁴⁺ and Mn³⁺, respectively. But the ratio of Mn⁴⁺/Mn³⁺ decreased from 21.88/78.12 to 18.86/81.14. Mn was the primary active sites for the catalytic oxidation. During the Hg⁰ removal process, the high valance of Mn was reduced to the lower valance. In the spectrum of Li 1 s, it had nearly no change. But on the surface of after adsorption sample, mercury was detected. In the spectrum of Hg 4f, the peaks at 105.1 and 101.1 eV can be ascribed to Hg–O bond. This indicated that the Hg⁰ removal process was a chemical-adsorption process.

Gaseous Hg^0 was firstly adsorbed on the surface of Mn-based materials. And then the Hg^0 was oxidized to Hg^{2+} along with the reducing of Mn^{4+} to Mn^{3+} or Mn^{3+} to Mn^{2+} . The Hg^{2+} was finally chemical-adsorbed by surface oxygen. The processed is attributed to the Mars–Maessen mechanism [26], were described as follows:

$$Hg^{U}(g) \leftrightarrow \equiv Hg^{U}(ads) \tag{2}$$

$$2 \equiv Mn^{4+} + \equiv Hg^{0}(ads) \leftrightarrow 2 \equiv Mn^{3+} + \equiv Hg^{2+}$$
(3)

$$2 \equiv Mn^{3+} + \equiv Hg^{0}(ads) \leftrightarrow 2 \equiv Mn^{2+} + \equiv Hg^{2+}$$

$$\tag{4}$$

$$\equiv 0^{2-} + \equiv Hg^{2+} \leftrightarrow \equiv Hg - 0 \tag{5}$$

During the Hg^0 removal process, the free Li^+ in the MnO_6 units was beneficial for electron transfer.

$$\text{LiMn}_2\text{O}_4 \leftrightarrow \text{Li}_{1-x}\text{Mn}_2\text{O}_4 + x\text{Li}^+ + x\text{e}^- \tag{6}$$

Base on H₂-TPR results, the Li⁺ in the λ -MnO₂ was beneficial for the interaction with higher valance of Mn. So Mn keep the higher valance state. MnO₂ had higher valance of Mn compared to that of Mn₂O₃ or the mixed Li₂O–Mn₂O₃ which was beneficial for the higher catalytic performance.

3.4. Regeneration test

As shown in Fig. 10, the property of regeneration was tested using the Hg-TPD method, and the activation energy for desorption was calculated. The results of the Hg-TPD curves under different rates of heating on LiMn_2O_4 are shown in Fig. 10. During the desorption process at each heating rate, one primary peak emerged on the Hg-TPD curves, suggesting that Hg-O bond the main specie on the LiMn₂O₄ surface. According to the results, mercury could be released at approximately 400 °C under pure N₂ conditions.

Based on the desorption data under different rates of heating, the desorption activation energy was calculated according to Eq. (7):

$$2LnT_p - Ln\beta = \frac{E_d}{RT_p} - Ln\frac{E_d}{AR}$$
(7)

where T_p is the maximum value at a certain temperature (K), β is the heating rate (K/min), Ed is the desorption activation energy (kJ/mol), *R* is the gas constant, *T* is the temperature (K), and *A* is a preexponential factor. According to the Eq. (7), the desorption activation energies was 58.82 kJ/mol.

4. Conclusions

In summary, LiMn₂O₄ was synthesized the catalytic removal performance for Hg⁰ was investigated. LiMn₂O₄ exhibited better performance compared to that of Mn₂O₃ and Li₂O–Mn₂O₃ mixed oxides. LiMn₂O₄ presented a spinel structure, with the addition of Li⁺ ions, the surface area was enlarged. And the reducibility was enhanced. The Hg⁰ removal mechanism can be described into two steps: (1) physical-adsorption: Hg⁰ first adsorbed on LiMn₂O₄, the larger surface area benefited physical-adsorption; (2) catalytic oxidation-adsorption: Hg⁰ was oxidized by the reduction of Mn and adsorbed with oxygen. Furthermore, after adsorption, the mercury on LiMn₂O₄ surface can release using thermal decomposition method. The released mercury can be collected which protected from mercury secondary contamination.

Acknowledgments

This work was supported by the Major State Basic Research Development Program of China (973 Program, No. 2013CB430005), the National Natural Science Foundation of China (No. 51478261 and No. 51278294). Thanks for Shanghai Tongji Gao Tingyao Environmental Science and Technology Development Foundation.

References

- C.-J. Lin, S.O. Pehkonen, The chemistry of atmospheric mercury: a review, Atmos. Environ. 33 (1999) 2067–2079.
- [2] J.H. Pavlish, E.A. Sondreal, M.D. Mann, E.S. Olson, K.C. Galbreath, D.L. Laudal, S. A. Benson, Status review of mercury control options for coal-fired power plants, Fuel Process. Technol. 82 (2003) 89–165.
- [3] A.A. Presto, E.J. Granite, Survey of catalysts for oxidation of mercury in flue gas, Environ. Sci. Technol. 40 (2006) 5601–5609.
- [4] J. Wilcox, E. Rupp, S.C. Ying, D.-H. Lim, A.S. Negreira, A. Kirchofer, F. Feng, K. Lee, Mercury adsorption and oxidation in coal combustion and gasification processes, Int. J. Coal Geol. 90 (2012) 4–20.
- [5] A.D. Jew, E.C. Rupp, D.L. Geatches, J.-E. Jung, G. Farfan, L. Bahet, J.C. Hower, G.E. Brown Jr, J. Wilcox, Mercury interaction with the fine fraction of coalcombustion fly ash in a simulated coal power plant flue gas stream, Energy Fuels 29 (2015) 6025–6038.
- [6] A. Suarez Negreira, J. Wilcox, Uncertainty analysis of the mercury oxidation over a standard SCR catalyst through a lab-scale kinetic study, Energy Fuels 29 (2014) 369–376.
- [7] J. Wo, M. Zhang, X. Cheng, X. Zhong, J. Xu, X. Xu, Hg 2+ reduction and reemission from simulated wet flue gas desulfurization liquors, J. Hazard. Mater. 172 (2009) 1106–1110.
- [8] J. He, C. Duan, M. Lei, X. Zhu, The secondary release of mercury in coal fly ashbased flue-gas mercury removal technology, Environ. Technol. 37 (2016) 28– 38.

- [9] J. He, G.K. Reddy, S.W. Thiel, P.G. Smirniotis, N.G. Pinto, Ceria-modified manganese oxide/titania materials for removal of elemental and oxidized mercury from flue gas, J. Phys. Chem. C 115 (2011) 24300–24309.
- [10] H. Li, C.-Y. Wu, Y. Li, J. Zhang, Superior activity of MnOx–CeO₂/TiO₂ catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures, Appl. Catal. B 111 (2012) 381–388.
- [11] H. Xu, J. Xie, Y. Ma, Z. Qu, S. Zhao, W. Chen, W. Huang, N. Yan, The cooperation of Fe Sn in a MnOx complex sorbent used for capturing elemental mercury, Fuel 140 (2015) 803–809.
- [12] S. Yang, Y. Guo, N. Yan, D. Wu, H. He, J. Xie, Z. Qu, J. Jia, Remarkable effect of the incorporation of titanium on the catalytic activity and SO₂ poisoning resistance of magnetic Mn–Fe spinel for elemental mercury capture, Appl. Catal. B 101 (2011) 698–708.
- [13] H. Xu, Z. Qu, S. Zhao, J. Mei, F. Quan, N. Yan, Different crystal-forms of onedimensional MnO₂ nanomaterials for the catalytic oxidation and adsorption of elemental mercury, J. Hazard. Mater. 299 (2015) 86–93.
- [14] J. Chen, M. Shen, X. Wang, J. Wang, Y. Su, Z. Zhao, Catalytic performance of NO oxidation over LaMeO₃ (Me = Mn, Fe, Co) perovskite prepared by the sol-gel method, Catal. Commun. 37 (2013) 105–108.
- [15] J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, J. Li, ChemInform abstract: perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis, ChemInform 45 (2014).
- [16] H. Xu, Z. Qu, C. Zong, F. Quan, J. Mei, N. Yan, Catalytic oxidation and adsorption of Hg 0 over low-temperature NH 3-SCR LaMnO 3 perovskite oxide from flue gas, Appl. Catal. B: Environ. (2015).
- [17] Z. Zhou, X. Liu, B. Zhao, H. Shao, Y. Xu, M. Xu, Elemental mercury oxidation over manganese-based perovskite-type catalyst at low temperature, Chem. Eng. J. 288 (2016) 701–710.
- [18] Y. Wang, Y. Wang, D. Jia, Z. Peng, Y. Xia, G. Zheng, All-nanowire based Li-ion full cells using homologous Mn₂O₃ and LiMn₂O₄, Nano Lett. 14 (2014) 1080– 1084.
- [19] D.M. Robinson, Y.B. Go, M. Mui, G. Gardner, Z. Zhang, D. Mastrogiovanni, E. Garfunkel, J. Li, M. Greenblatt, G.C. Dismukes, Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis, J. Am. Chem. Soc. 135 (2013) 3494–3501.
- [20] D.M. Robinson, Y.B. Go, M. Greenblatt, G.C. Dismukes, Water oxidation by λ-MnO₂: catalysis by the cubical Mn₄O₄ subcluster obtained by delithiation of spinel LiMn₂O₄, J. Am. Chem. Soc. 132 (2010) 11467–11469.
- [21] H.M. Xu, Z. Qu, C.X. Zong, W.J. Huang, F.Q. Quan, N.Q. Yan, MnOx/graphene for the catalytic oxidation and adsorption of elemental mercury, Environ. Sci. Technol. 49 (2015) 6823–6830.
- [22] J. Cho, T.J. Kim, J.K. Yong, B. Parkb, Complete blocking of Mn3+ ion dissolution from a LiMn₂O₄ spinel intercalation compound by Co₃O₄ coating, Chem. Commun. 12 (2001) 1074–1075.
- [23] C.V. Ramana, R.J. Smith, O.M. Hussain, M. Massot, C.M. Julien, Surface analysis of pulsed laser-deposited V₂O₅ thin films and their lithium intercalated products studied by Raman spectroscopy, Surf. Interface Anal. 37 (2005) 406– 411.
- [24] S.J. Hwang, D.H. Park, J.H. Choy, G. Campet, Effect of chromium substitution on the lattice vibration of spinel lithium manganate: a new interpretation of the Raman spectrum of LiMn₂O₄, J. Phys. Chem. B 108 (2004) 12713–12717.
- [25] J. Li, N. Yan, Z. Qu, S. Qiao, S. Yang, Y. Guo, P. Liu, J. Jia, Catalytic oxidation of elemental mercury over the modified catalyst Mn/α-Al₂O₃ at lower temperatures, Environ. Sci. Technol. 44 (2009) 426–431.
- [26] S. Yang, Y. Guo, N. Yan, D. Wu, H. He, J. Xie, Z. Qu, C. Yang, J. Jia, A novel multifunctional magnetic Fe–Ti–V spinel catalyst for elemental mercury capture and callback from flue gas, Chem. Commun. 46 (2010) 8377–8379.