# **Environmental** Science & Technology

# Novel Effective Catalyst for Elemental Mercury Removal from Coal-Fired Flue Gas and the Mechanism Investigation

Wanmiao Chen, Yang Pei, Wenjun Huang, Zan Qu, Xiaofang Hu, and Naiqiang Yan\*

School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 PR China

# **Supporting Information**

**ABSTRACT:** Mercury pollution from coal-fired power plants has drawn attention worldwide. To achieve efficient catalytic oxidation of Hg<sup>0</sup> at both high and low temperatures, we prepared and tested novel IrO<sub>2</sub> modified Ce–Zr solid solution catalysts under various conditions. It was found that the IrO<sub>2</sub>/ Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub> catalyst, which was prepared using the polyvinylpyrrolidone-assisted sol–gel method, displayed significantly higher catalytic activity for Hg<sup>0</sup> oxidation. The mechanism of Hg<sup>0</sup> removal over IrO<sub>2</sub>/Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub> was studied using various methods, and the Hg<sup>0</sup> oxidation reaction was



found to follow two possible pathways. For the new chemisorption–regeneration mechanism proposed in this study, the adsorbed  $Hg^0$  was first oxidized with surface chemisorbed oxygen species to form HgO; the HgO could desorb from the surface of catalysts by itself or react with adsorbed HCl to be release in the form of gaseous  $HgCl_2$ .  $O_2$  is indispensable for the chemisorption process, and the doping of  $IrO_2$  could facilitate the chemisorption process. In addition, the Deacon reaction mechanism was also feasible for  $Hg^0$  oxidation: this reaction would involve first oxidizing the adsorbed HCl to active Cl species, after which the  $Hg^0$  could react with Cl to form  $HgCl_2$ . Additionally, doping  $IrO_2$  could significantly improve the Cl yield process. In summary, the novel  $IrO_2$  modified catalyst displayed excellent catalytic activity for elemental mercury oxidation, and the proposed reaction mechanisms were determined reasonably.

# **INTRODUCTION**

Mercury is a heavy metal pollutant with high levels of toxicity, bioaccumulation, and persistence that has caused worldwide concern.<sup>1</sup> The Minamata Convention on Mercury regarding mercury pollution was signed by many governments in 2013, which pressured major mercury emitters such as China and the United States to reduce mercury emissions.<sup>2,3</sup> Coal-fired power plants are the primary sources of anthropogenic mercury pollution to the atmosphere because of high levels of coal consumption. Some researches proposed that mercury from coal-fired boilers contributed approximately 40% of the total mercury emissions in China.<sup>4,5</sup> Mercury can exist in coal-fired flue gas in three different forms: elemental mercury (Hg<sup>0</sup>), gaseous oxidized mercury (Hg<sup>2+</sup>), and particulate-bound mercury (Hg<sup>P</sup>). The distribution of these forms mainly depends on the chlorine content of the coal and the combustion conditions.<sup>6</sup> Most oxidized and particulate-bound mercury can be easily removed from the exhaust with typical air-pollutioncontrol devices (APCDs). However, Hg<sup>0</sup> is highly volatile and insoluble and is the dominant mercury species that escapes into the atmosphere from coal-fired power plants. Therefore, the catalytic oxidation of Hg<sup>0</sup> to Hg<sup>2+</sup> (which can be dissolved in water and captured by WFGD under certain conditions) with HCl from flue gas is an economical and feasible method for achieving greater mercury removal efficiency with existing APCDs.<sup>6–10</sup> For example, the catalysts involved in the process of selective catalytic reduction (SCR) of NO<sub>x</sub>, which usually occurs at 300–400 °C,<sup>11</sup> have been investigated as potential Hg<sup>0</sup> conversion catalysts when sufficient HCl is present in the flue gas.<sup>6,12</sup> However, the presence of ammonia (NH<sub>3</sub>), which is used as an SCR reductant, can significantly inhibit Hg<sup>0</sup> oxidation over conventional SCR catalysts.<sup>12,13</sup> Therefore, it is reasonable to equip Hg<sup>0</sup> oxidation catalysts at the tail section of the SCR unit, where the NH<sub>3</sub> concentration is lower. In addition, the low-temperature SCR (approximately 150 °C) technique has become more popular in recent years and has a tendency for future industrial applications.<sup>14</sup> Therefore, it is important to develop a new catalyst that could convert elemental mercury significantly at lower temperatures and thus be compatible with low-temperature SCR catalysts.

Many studies have proposed that the catalytic oxidation of Hg<sup>0</sup> to Hg<sup>2+</sup> over some catalysts with presence of HCl could be explained through the Deacon reaction pathway, in which HCl is converted to Cl<sub>2</sub> or Cl atoms by oxygen.<sup>15–18</sup> IrO<sub>2</sub> has proven to be an active catalyst for the Deacon reaction, effectively converting HCl to Cl<sub>2</sub>.<sup>19,20</sup> Thus, IrO<sub>2</sub> is expected to be a promising catalyst component for Hg<sup>0</sup> conversion in the

Received:November 11, 2015Revised:January 23, 2016Accepted:January 27, 2016Published:January 27, 2016

presence of HCl. A solid solution of ceria (Ce) and zirconia (Zr) with cubic fluorite phase (Ce/Zr > 1:1) has been used as the catalyst carrier in recent studies because of its outstanding oxygen storage capacity and unique redox properties.<sup>11,21-23</sup> In previous studies, catalysts for elemental mercury oxidation were developed from SCR catalysts,<sup>24</sup> and Ce-Zr solid-solutionsupported metal oxide catalysts exhibited significant catalytic activity for low-temperature-selective catalytic reduction of  $NO_x$  from coal-fired flue gas.<sup>23</sup> Other previous studies have reported that Ce-Zr supported catalysts display excellent catalytic oxidation ability for the ammonia slipping from SCR units, which would also mitigate the negative effects of NH<sub>3</sub> on elemental mercury oxidation.<sup>25</sup> Therefore, the Ce-Zr solid solution is a promising catalyst for Hg<sup>0</sup> oxidation that would be compatible with SCR units at both high and low temperatures. Although Ir has been used as mercury-removal sorbent,<sup>14</sup> the catalytic activity of the IrO2 modified Ce-Zr complex for mercury oxidation is still unclear. In addition, the interaction between IrO2 and the Ce-Zr supporter has not been studied previously. Mechanisms including the Mars-Maessen mechanism, the Eley-Rideal mechanism, and the Langmuir-Hinshelwood mechanism<sup>6,26</sup> have been proposed for mercury oxidation over various catalysts.<sup>17</sup> However, the mechanism of mercury removal over IrO2 modified catalyst is unclear. In particular, there is still no consensus regarding the role of Cl in the process of elemental mercury oxidation. Thus, we focus on the mechanism of mercury oxidation in this study.

Because Ir is a noble metal and is thus more expensive than most transition metals, the  $IrO_2$  content was set a very low level (0.2%). To maintain catalytic performance despite the low Ir concentration, we used the sol-gel method with polyvinylpyrrolidone (PVP) to enhance the dispersion of  $IrO_2$  on the catalyst surface. We evaluated the efficiency of elemental mercury removal and adsorption behavior over various modified catalysts. In addition, we evaluated the possible catalytic mechanisms of elemental mercury using techniques such as H<sub>2</sub> temperature-programmed reduction (TPR), Hg temperature-programmed desorption (TPD), and Cl<sub>2</sub> yield. We focus our discussion on the effects of  $IrO_2$  and Cl in the oxidation process.

#### EXPERIMENTAL SECTION

**Materials and Catalyst Preparation.** The IrO<sub>2</sub> doping catalysts were synthesized according to a method reported in literature.<sup>27</sup> First, 0.2 g polyvinylpyrrolidone (Mw = 58 000) and quantitative iridium acetate were dissolved in 30 mL of ethanol, and the mixture was refluxed at 100 °C for 3 h. After this, the Ir colloidal solution was added to  $Ce_xZr_{1-x}O_2$  (see the Supporting Information), and the mixture was dried at 60 °C with electromagnetic stirring. Calcination was achieved by increasing the temperature from room temperature to 400 °C at a 1 °C/min ramping rate, after which the solution was heated at 400 °C for 5 h in air. The catalysts were labeled as  $IrO_2/Ce_xZr_{1-x}O_2$  (PVP).  $IrO_2/Ce_xZ_{1-x}O_2$  was prepared with the wet impregnation method.<sup>28</sup> The Ir oxide content of  $Ce_xZr_{1-x}O_2$  was set at 0.2 wt % for all catalysts.

**Catalyst Characterization.** X-ray photoelectron spectroscopy (XPS) measurements were taken with an AXIS UItraDLD (Shimadzu–Kratos) spectrometer with Al Ka as the excitation source. The C 1s line at 284.8 eV was used as a reference for the binding-energy calibration. The  $H_2$  temperature program reduction curves were determined using a chemisorption analyzer (2920, AutoChem II, Micromeritics). The  $H_2$  flow rate was 50  $\rm cm^3/min$  and the temperature ramp rate was 10  $^\circ C/min.$ 

**Catalytic Activity Measurement.** The Hg<sup>0</sup> adsorption and catalytic oxidation experiments over catalysts were performed in a fixed-bed quartz reactor; the experimental system is shown in Figure S1. The catalysts powder was placed in the reactor with quartz wool under atmospheric pressure, and the reactor was heated by a vertical electrical furnace. The feed gases were adjusted by mass-flow controllers and introduced into the reactor with a total flow rate of 500 mL/ min. The gas with stable elemental mercury concentration from a Hg<sup>0</sup> permeation tube flowed through the blank tube and the reactor tube. The mercury concentration was monitored by a Lumex 915+ or Tekran 3300 mercury analyzer. The Tekran 3300 systems were programmed to measure  $Hg^{T}$  and  $Hg^{0}$ semicontinuously over a 2.5 min collection-analysis cycle. The reported Hg<sup>2+</sup> fraction was calculated as the difference between sequentially measured Hg<sup>T</sup> and Hg<sup>0</sup> concentrations.

For the Hg<sup>0</sup> adsorption experiment, the Hg<sup>0</sup> flow first passed through the blank tube to provide an original Hg<sup>0</sup> signal. The Hg<sup>0</sup> concentration for the adsorption experiment was ranged from 370 to 1500 ng/L for the different experiments. We used these high concentrations for two reasons. First, the Hg<sup>0</sup> adsorption capacity of our catalysts is very high, so if a normal mercury concentration was used, it would take long time to reach equilibrium. High mercury concentration could shorten the adsorption time. Many previous studies have also used high mercury concentration.<sup>29,30</sup> Second, high mercury concentration can minimize the relative error due to continuous data acquisition in the tests. For the results obtained from Tekran 3300 mercury analyzer, the mercury concentration was approximately 370 ng/L due to the test limit. After the Hg<sup>0</sup> concentration had stabilized, the Hg<sup>0</sup> concentration in the outlet was measured as [Hg<sup>0</sup>]<sub>1</sub>, and then the gas was switched to the reactor tube to begin Hg<sup>0</sup> adsorption. For the Hg<sup>0</sup> catalytic oxidation experiment with HCl and O2, the flow containing mercury was first passed through the catalysts to undergo adsorption. Next, HCl or other gases were added to the gas, and the Hg<sup>0</sup> concentration in the outlet was measured as [Hg<sup>0</sup>]<sub>2</sub> until the reaction attained equilibrium (stable for long time). The Hg<sup>0</sup> oxidation efficiency  $(E_{oxi})$  over the catalysts was quantified by the following equation:

$$E_{\text{oxi}} (\%) = \frac{[\text{Hg}^{0}]_{1} - [\text{Hg}^{0}]_{2}}{[\text{Hg}^{0}]_{1}} \times 100\%$$

Hg-TPD was conducted using 30 mg of the catalyst in a quartz reactor. First, the Hg<sup>0</sup> adsorption achieved by passing a gas mixture containing approximately 1090 ng/L Hg<sup>0</sup> with  $O_2/N_2$  or  $N_2$  as the balance gas through the reactor tube at 150 °C for 90 min with a total flow rate of 500 mL/min; next, the reactor tube was purged with  $N_2$  for 30 min. Desorption measurements were performed from 150 to 500 °C at a heating rate of 5 °C/min under a  $N_2$  atmosphere of 500 mL/min. An online mercury analyzer continuously recorded the desorbed concentration of Hg<sup>0</sup>.

Finally, the mechanism of  $Hg^0$  oxidation was evaluated using Deacon reaction evaluation units (with chlorine yield as the marker). The Cl<sub>2</sub> concentration was monitored using a UV/vis spectrometer (BWTEK BRC642E) with a photocell constructed to have an optical length of 80 cm.

# RESULTS AND DISCUSSION

**Catalytic Activity.** The Figure 1 shows the catalytic oxidation efficiencies over catalysts under various conditions;



**Figure 1.** Catalytic oxidation of Hg<sup>0</sup> over various catalysts and different condition at 350 and 150 °C. Reaction conditions: 500 ppm of SO<sub>2</sub>; O<sub>2</sub>, 4 vol %; N<sub>2</sub> as carrier; flow rate, 500 mL/min; catalyst weight, 30 mg. The space velocity (SV) was approximately  $7.6 \times 10^5$  h<sup>-1</sup>.

preliminary tests showed that Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub> supported catalysts displayed superior catalytic activity (Figure S2). The Hg<sup>0</sup> oxidation efficiency over Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub> was 22% when there was only 4% O<sub>2</sub> in the gas at 150 °C. The mercury-removal efficiencies over IrO2 modified catalysts increased to approximately 41% and 44% in the presence of  $O_2$  for  $IrO_2/$ Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub> and IrO<sub>2</sub>/Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub> (PVP), respectively, which indicated that doping with only 0.2% IrO<sub>2</sub> could significantly facilitate Hg<sup>0</sup> conversion even without HCl. When HCl was introduced into the gas, mercury removal efficiencies were enhanced significantly over all three catalysts. For example, the mercury removal efficiency over IrO2/Ce0.6Zr0.4O2 increased from 41% to 90% in the presence of 3 ppm of HCl at 350 °C. The synthesis method also had an effect on the catalytic activity. The Hg<sup>0</sup> oxidation efficiency over IrO<sub>2</sub>/ Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub>(PVP) increased to approximately 97% at 150 °C. We propose that PVP might promote IrO<sub>2</sub> dispersion over the carrier, similar to results in other studies, and the catalytic activity was slightly enhanced in consequence.<sup>27</sup> We also tested the effects of SO<sub>2</sub> on Hg<sup>0</sup> oxidation. Results showed that SO<sub>2</sub> had a different influence on all three catalysts at high and low temperatures. We note that mercury concentrations decreased during addition of SO<sub>2</sub> at both high and low temperatures (Figure S3). Some previous studies have proposed that  $SO_2$ could be transferred to  $SO_3$  over some catalysts and that  $SO_3$ could improve the adsorption of Hg<sup>0</sup> to the catalysts.<sup>31</sup> After the adsorption saturation was reached, the Hg<sup>0</sup> concentration in the outlet began to increase (Figure S3), and  $SO_2$  then displayed inhibition on Hg<sup>0</sup> removal. At high temperatures, 500 ppm of SO<sub>2</sub> could obviously inhibit mercury removal over all three catalysts. For example, the mercury oxidation of the  $IrO_2/$  $Ce_{0.6}Zr_{0.4}O_2$  (PVP) catalyst decreased from 99% to 75% in the presence of SO<sub>2</sub> at 350 °C. However, the catalysts displayed excellent tolerance for SO<sub>2</sub> poisoning at lower temperatures, at which SO<sub>2</sub> had negligible effects on mercury removal over all three catalysts. In addition, the Hg<sup>0</sup> oxidation efficiency of  $IrO_2/Ce_{0.6}Zr_{0.4}O_2(PVP)$  was greater than 90% in the simulated coal-fired flue gas (including NO, NH<sub>3</sub>, SO<sub>2</sub>, H<sub>2</sub>O, O<sub>2</sub>, and N<sub>2</sub>) over a long experimental duration at both high and low temperatures(Figure S4 and S5). The results showed that catalysts had excellent durability for the complex components in the flue gas.

Adsorption Experiment. Adsorption generally plays a significant role in catalytic reactions. Therefore, to determine the catalytic mechanism of mercury oxidation over the  $IrO_2$  modified catalysts, we evaluated the adsorption of  $Hg^0$  under various conditions (Figure 2). First,  $Hg^0$  adsorption was



**Figure 2.** Adsorption breakthrough curves of Hg<sup>0</sup> over the IrO<sub>2</sub>/ $Ce_{0.6}Zr_{0.6}O_2$  (PVP) catalysts under different conditions. Reaction conditions: 4 vol % O<sub>2</sub>; N<sub>2</sub> as carrier; flow rate, 500 mL/min; catalyst weight, 30 mg. The space velocity was approximately 7.6 × 10<sup>5</sup> h<sup>-1</sup>. The temperature was 350 °C.

performed over the  $IrO_2/Ce_{0.6}Zr_{0.4}O_2$  catalyst in the absence of  $O_{22}$  and adsorption equilibrium was reached quickly within 30 min. After adsorption saturation was reached, the  $Hg^0$  concentration recovered to initial levels, such that  $Hg^0$  could no longer be converted over the catalyst in the absence of  $O_2$ . However, the breakthrough curve was very different in the presence of  $O_2$ , the adsorption capacity was much larger with  $O_2$  present and the reaction took approximately 165 min to reach adsorption saturation. These results indicate that the adsorption process of  $Hg^0$  over the  $IrO_2/Ce_{0.6}Zr_{0.4}O_2$  catalyst is likely a chemisorption process, and that  $O_2$  is indispensable for this process. The final detected concentration for  $Hg^0$  was approximately 60% of the initial level, which suggests that  $Hg^0$  can be oxidized over the  $IrO_2$  modified catalyst in the absence of HCl. This agrees with the results shown in Figure 1.

Halogens can strongly affect mercury removal. To clarify the effect of gaseous HCl, we also performed the Hg<sup>0</sup> adsorption experiment over a  $IrO_2/Ce_{0.6}Zr_{0.4}O_2$  catalyst pretreated with HCl. The  $IrO_2$  modified catalyst was pretreated with 10 ppm of HCl and 4% O<sub>2</sub> with N<sub>2</sub> carrier at 350 °C for 4 h, after which it was purged with N<sub>2</sub> for 1 h. Next, the Hg<sup>0</sup> adsorption experiment was carried out, and the adsorption curve is shown in Figure 2. The result shows that the adsorption capacity of the catalyst was significantly improved by HCl treatment, and the removal efficiency of elemental mercury was higher than 99%, even after interacting with Hg<sup>0</sup> for 300 min. To identify the interaction between HCl and O<sub>2</sub> and evaluate the role of O<sub>2</sub>, we performed another Hg<sup>0</sup> adsorption experiment over the catalyst. The catalyst was pretreated under 10 ppm of HCl without O<sub>2</sub> for 4 h, after which it was purged with N<sub>2</sub> for 1 h.

The resulting adsorption curve was similar to the curve from the treatment with HCl and  $O_2$ , showing that HCl can have an effect on mercury removal in the absence of  $O_2$ . Additionally, this result suggests that HCl and  $O_2$  might not interact during the reaction.

**Hg-TPD.** After the mercury adsorption experiments, we used the Hg-TPD technique to identify the mercury captured on the  $IrO_2/Ce_{0.6}Zr_{0.4}O_2$  catalysts, and the results are shown in Figure 3. After the catalyst adsorbed Hg<sup>0</sup> in 4%  $O_2/N_2$  atmosphere,



Figure 3. Temperature-programmed-desorption of Hg over the  $IrO_2/Ce_{0.6}Zr_{0.4}O_2$  (PVP) catalysts under different conditions.

two main desorption peaks are present at approximately 284 and 425 °C. According to some literature, two desorption peaks centered at approximately 110 and 260 °C can be observed over many catalysts during Hg-TPD experiment, and these correspond to the decomposition of weakly adsorptive species and strongly bound species, respectively.<sup>32</sup> Because the adsorption experiment in this research was performed at 150 °C, it is reasonable that we cannot detect desorption peaks below 150 °C. The peak at 284 °C is close in value to the peak at approximately 260 °C shown by previous studies, so we suggest that it may reflect the desorption of strongly bound, physically adsorbed Hg<sup>0</sup>. The desorption peak at higher temperatures, then, likely corresponds to the decomposition of HgO.<sup>33</sup> The fact that the peak area at 425 °C is much larger than the peak area at 284 °C indicates that the majority of the mercury species existed as HgO and chemisorption was the dominant mode of Hg<sup>0</sup> adsorption on the IrO<sub>2</sub> modified catalyst. While, the intensities of the desorption peaks were much weaker over the catalyst that adsorbing  $Hg^0$  in a pure  $N_2$ atmosphere. The desorption peak of HgO is still observed, possibly because Hg<sup>0</sup> could still be chemically adsorbed and converted to HgO due to the outstanding oxygen storage capacity of the  $Ce_{0.6}Zr_{0.4}O_2$  carrier.

To evaluate the effect of HCl on mercury adsorption, we pretreated the catalyst with HCl and  $O_2/N_2$  atmosphere at 150 and 350 °C, respectively, before Hg<sup>0</sup> adsorption, and the results are also given in Figure 3. A broad desorption shoulder is present from 250 °C over the catalyst pretreated with HCl under an 4%  $O_2/N_2$  at 150 °C. Meanwhile, a desorption peak is centered at 450 °C for the catalyst pretreated under HCl with 4%  $O_2$  at 350 °C. The intensities of the mercury desorption peaks over the catalyst after HCl treatment were much weaker than the fresh catalysts, which meant the amount of mercury adsorbed over the catalyst became much less because of the

HCl treatment. Some studies have shown that the thermal decomposition of HgCl<sub>2</sub> phase occurs at low temperatures ranging from 70 to 220 °C (with a maximum at 120 °C).<sup>34</sup> Our results did not show any such desorption peaks over the HCl-pretreated catalysts, indicating that none of the HgCl<sub>2</sub> species existed over the surface of the HCl-pretreated catalysts, even after Hg<sup>0</sup> adsorption. We also treated the catalyst with HCl in N<sub>2</sub> atmosphere at 350 °C before Hg<sup>0</sup> adsorption. The resulting desorption profile was similar, and no obvious desorption peak was detected for the catalyst pretreated with HCl in N<sub>2</sub>. This result suggests that HCl can affect the reaction in the absence of O<sub>22</sub> which supports the results shown in Figure 2.

The results in Figures 2 and 3 seem "contradictory". Figure 2 shows that HCl treatment with or without  $O_2$  can significantly improve the apparent adsorption capacity of Hg<sup>0</sup> over the catalyst. In contrast, Figure 3 shows that the amount of desorption of adsorbed mercury over the HCl pretreated catalyst was much less than that the amount from fresh catalyst. To explain these "contradictory" situation, we propose a new mechanism called the chemisorption-regeneration mechanism. First, elemental mercury is adsorbed to the surface of the catalyst, and the adsorbed Hg<sup>0</sup> is oxidized with surfacechemisorbed oxygen species to form HgO (see reactions 2-3 below). The portion of formed HgO can desorb from the catalyst's surface in the absence of HCl, which would regenerate active adsorption sites (reaction 4). Some studies have proposed that O<sub>2</sub> can be dissociated over IrO<sub>2</sub> catalyst (reaction 1),<sup>35</sup> which could replenish the consumption of active oxygen. This could explain why elemental mercury could be oxidized in the presence of  $O_2$  alone in Figure 1. When HCl exists in gas, it can adsorb to the catalyst surface and then react with formed HgO to HgCl<sub>2</sub> (reactions 5-7). HgCl<sub>2</sub> is much easier to be released as a gas from the surface of the catalyst.<sup>3</sup> In this reaction pathway, HCl could affect the mercury adsorption property of the catalyst even in the absence of O<sub>2</sub>. When the HCl treatment and Hg<sup>0</sup> adsorption with O<sub>2</sub> were divided factitiously into two separate processes, as in the experiments shown in Figures 2 and 3, they demonstrated the chemisorption process for reactant and the regeneration process for the catalyst. When Hg<sup>0</sup>, O<sub>2</sub>, and HCl coexisted in the experiment as shown in Figure 1 (and in real coal-fired flue gas), the chemisorption process and regeneration process by HCl could proceed simultaneously. The apparent experimental result was that Hg<sup>0</sup> is converted into HgCl<sub>2</sub> continuously. The overall reaction could be considered to be catalytic oxidation, as in reaction 8.

$$O_2(g) \rightarrow 2O$$
 (1)

$$Hg^{0}(g) \rightarrow Hg^{0}(ads)$$
 (2)

$$Hg^{0}(ads) + O \rightarrow HgO(ads)$$
 (3)

$$HgO(ads) \rightarrow HgO(g)$$
 (4)

$$HCl(g) \rightarrow HCl(ads)$$
 (5)

$$HgO(ads) + 2HCl(ads) \rightarrow HgCl_2(ads) + H_2O$$
 (6)

$$HgCl_2(ads) \rightarrow HgCl_2(g)$$
 (7)

$$Hg(g) + 2HCl(g) + O_2(g) \rightarrow HgCl_2(g) + H_2O(g)$$
(8)

**Verification of the Proposed Mechanism.** To verify the mechanism proposed above, we employed a Tekran mercury



**Figure 4.** Mercury removal experiments on the Terkan mercury analyzer. Reaction conditions: 10 ppm of HCl; O<sub>2</sub>, 4 vol %; N<sub>2</sub> as carrier; flow rate, 500 mL/min; catalyst weight, 30 mg. The space velocity (SV) was approximately  $7.6 \times 10^5$  h<sup>-1</sup>. The temperature was 350 °C. (a) N<sub>2</sub> balance; (b) N<sub>2</sub> balance, adding HCl; (c) N<sub>2</sub> balance, adding 4% O<sub>2</sub>; (d) N<sub>2</sub> balance, 4% O<sub>2</sub>, adding HCl.

analyzer that could simultaneously monitor total mercury  $(Hg^{T})$  and elemental mercury  $(Hg^{0})$  in gas to perform mercury oxidation experiment. First, N<sub>2</sub> gas with Hg<sup>0</sup> passed through the IrO<sub>2</sub>/Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub> (PVP) catalyst, and the results are shown in Figure 4a. Although no  $O_2$  was present in the gas, some  $Hg^{2+}$  in the initial stage of adsorption was detected in the exhaust. This could be explained by the fact that adsorbed Hg<sup>0</sup> was oxidized by active oxygen species from the Ce-Zr solid solution due to its outstanding oxygen storage capacity, which will be discussed later. After adsorption equilibrium was reached, HCl was introduced into the gas, and the results are shown in Figure 4b. When HCl was added into the gas, a momentary increase of Hg<sup>T</sup> was observed. This increase may have occurred because the Hg2+ formed over the catalyst reacted with HCl to form HgCl<sub>2</sub>, which then desorbed into the gas phase, as in reactions 6 and 7. Due to the desorption of oxidized mercury, the active sites on the surface of the catalyst were regenerated, and elemental mercury was adsorbed to the catalyst, which caused the decrease of Hg<sup>0</sup> shown in Figure 4b.

Figure 4c shows the results of Hg<sup>0</sup> adsorption over the catalyst in the absence of O2. After Hg<sup>0</sup> adsorption equilibrium was reached, no oxidized mercury could be detected (Figure 4c). Next,  $O_2$  gas was introduced, and the concentration of Hg<sup>0</sup> decreased significantly, likely because the chemisorption of Hg<sup>0</sup> over the catalyst was improved by the replenishment of oxygen species. We also note that oxidized mercury was generated with the presence of  $O_{21}$  and the amount increased over time. Though large amounts of oxidized mercury were formed, the concentration of Hg<sup>T</sup> decreased until the concentration of Hg<sup>0</sup> was stable. After that, the Hg<sup>T</sup> increased more gradually, and more Hg<sup>2+</sup> was generated. These results indicate that the oxidation of elemental mercury over the catalyst in the presence of  $O_2$  could proceed through reactions 2–4. Because Figure 4c only shows the initial stage of the chemisorption process, when adsorption equilibrium was not yet reached, the Hg<sup>0</sup> removal efficiency was much higher. After reaching adsorption

equilibrium, the removal efficiency would likely decrease to approximately 48% (corresponding to the results in Figures 1 and 4d). The catalytic oxidation of Hg<sup>0</sup> with O<sub>2</sub> and HCl was also monitored by the Tekran mercury analyzer, and the results are shown in Figure 4d. When approximately 370 ng/L Hg<sup>0</sup> was passed through the catalyst at 350 °C in the presence of  $O_{2}$ , approximately 175 ng/L Hg<sup>2+</sup> could be detected in the gas after reaching equilibrium, which demonstrates that elemental mercury can be catalytically oxidized by O<sub>2</sub> in the absence of HCl, like the result in Figure 1. This result also proves that the conversion of Hg<sup>0</sup> could proceed through reactions 2–4. When HCl was introduced into the gas, a momentary significant increase of Hg<sup>T</sup> and Hg<sup>2+</sup> was observed. This could have been caused by the release of Hg<sup>2+</sup> due to adding of HCl through reactions 5-6. As the oxidized mercury desorbed from the surface of the catalyst into gaseous form, the active sites on the catalyst were regenerated, which would accelerate the chemisorption of  $Hg^0$  (reactions 2–3), resulting in the decline of Hg<sup>0</sup> concentration. Because the concentration of Hg<sup>0</sup> decreased as HCl was added into the gas, the Hg<sup>T</sup> also decreased after the initial increase. After the reaction reached equilibrium, the Hg<sup>T</sup> began to increase again and finally recovered to its initial level. This indicates that mercury was balanced during the catalytic oxidation reaction.

**H<sub>2</sub>-TPR.** To investigate the redox ability of the catalysts, we tested the temperature program reduction (TPR) by hydrogen for the Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub> and IrO<sub>2</sub>/Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub> catalysts. The results are shown in Figure 5. The profile for the Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub> catalyst has a broad reduction peak that begins at 300 °C and is centered at approximately 580 °C. We attribute this peak to the reduction of the Ce<sup>4+</sup> in the Ce–Zr solid solution.<sup>37,38</sup> A weak peak at 260 °C appears in the profile for the 0.2%IrO<sub>2</sub>/ZrO<sub>2</sub> catalyst, which is ascribed to reduction of highly dispersed IrO<sub>2</sub> species.<sup>39</sup> Previous studies have shown that it is difficult to reduce ZrO<sub>2</sub> by H<sub>2</sub> at low temperatures, so the reduction peaks at approximately 530 °C over the profile of the 0.2%IrO<sub>2</sub>/ZrO<sub>2</sub>



Figure 5. H<sub>2</sub>-TPR curves of various catalysts.

catalyst could be caused by the interaction between IrO2 and ZrO<sub>2</sub> support.<sup>40</sup> A strong peak is present at approximately 190  $^{\circ}$ C for the IrO<sub>2</sub>/Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub> catalyst, and this is not observed in the profiles of  $Ce_{0.6}Zr_{0.4}O_2$  and  $IrO_2/ZrO_2$ . In general, peaks below 200 °C are probably caused by the reduction of crystalline IrO<sub>2</sub> species (large particles), and peaks above 250 °C are caused by the reduction of well-dispersed IrO<sub>2</sub> species.<sup>35</sup> However, the peak centered at 190 °C over the IrO<sub>2</sub>/ Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub> cannot be attributed to the reduction of IrO<sub>2</sub> alone because the content of  $IrO_2$  is only 0.2% and the H<sub>2</sub> consumption amount should be very low (similar to the small peak in the  $IrO_2/ZrO_2$  profile). In addition, the large peak at 580 °C caused by reduction of  $Ce^{4+}$  in the profile for the  $IrO_2/$  $Ce_{0.6}Zr_{0.4}O_2$  catalyst vanished with the doping of 0.2% IrO<sub>2</sub>. To identify the peak, we also show the  $H_2$ -TPR curve of  $IrO_2/$ CeO<sub>2</sub> in Figure 5, and a similar peak was detected at 210 °C. Therefore, it is reasonable to infer that the strong peak at low temperature (approximately 190 °C) could be explained by the interaction between IrO2 and Ce-Zr support. Thus, Ir-Ce mixed oxide might exist in the  $IrO_2/Ce_{0.6}Zr_{0.4}O_2$  catalyst, which resulted in an improved oxidation capacity at low temperatures. This would enhance reactions 2-4 over the catalysts and could explain why mercury oxidation in the presence of only O<sub>2</sub> was much more efficient with the addition of IrO<sub>2</sub>.

XPS Analysis. To understand the chemical state of the elements on the catalyst surface, we present the XPS spectra of Zr, Ce, and O in Figure S7. Figure S7 shows the core level spectrum of Zr 3d at various binding energies: 182.9 eV for Zr 3d5/2 and 184.7 eV for Zr 3d3/2. These peak values are typical of the Zr<sup>4+</sup> in ZrO<sub>2</sub>.<sup>41</sup> Complicated Ce 3d XPS spectra for the  $Ce_{0.6}Zr_{0.4}O_2$  and  $IrO_2/Ce_{0.6}Zr_{0.4}O_2$  catalysts are given in Figure S7. The bands labeled u1 and v1 represent the 3d<sup>10</sup>4f<sup>1</sup> initial electronic state, corresponding to  $Ce^{3+}$  ions, and the peaks labeled as u0, u2, u3, v0, v2, and v3 represent the 3d<sup>10</sup>4f<sup>0</sup> state of the Ce<sup>4+</sup> ions.<sup>11</sup> The ratio of  $Ce^{3+}/(Ce^{3+}+Ce^{4+})$  can be calculated from the area of these peaks,<sup>42</sup> and the concentration of  $Ce^{3+}$  calculated for the  $Ce_{0.6}Zr_{0.4}O_2$  catalyst was 33.53%. With the doping of 0.2%  $IrO_2$ , the percentage of  $Ce^{3+}$  ions increased to 40.19%. It has been proposed in many studies that the presence of Ce<sup>3+</sup> species can create charge imbalance, vacancies, and unsaturated chemical bonds on the surface of the catalysts, which will lead to increase of chemisorbed oxygen on the surface and benefit the catalytic activity.<sup>11,43</sup> Therefore, the O 1s spectra of various catalysts are also shown in Figure S7. The O 1s peaks can be divided into two peaks corresponding to the lattice oxygen at 529.3-530.0 eV and the chemisorbed

oxygen at 531.3–532 eV.<sup>11</sup> Surface chemisorbed oxygen has been reported to be the most active oxygen and plays an important role in oxidation reactions. The concentration of chemisorbed surface oxygen on the  $Ce_{0.6}Zr_{0.4}O_2$  catalyst was 10.13%, and this percentage increased to 66.68% after  $IrO_2$ doping, which supports the idea that the presence of  $IrO_2$  could significantly improve catalytic activity. After  $Hg^0$  adsorption without  $O_2$  over the  $IrO_2/Ce_{0.6}Zr_{0.4}O_2$  catalyst, the percentage of chemisorbed oxygen decreased to 32.22%, suggesting that the adsorbed  $Hg^0$  was mainly oxidized by the chemisorbed oxygen species.

The Role of IrO<sub>2</sub> and Another Possible Mechanism. To determine the role of doping with IrO<sub>2</sub> during the Hg<sup>0</sup> oxidation reaction, we show in Figure S6 the results of the  $Hg^0$  adsorption experiments over fresh  $Ce_{0.6}Zr_{0.4}O_2$  and HClpretreated Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub> catalysts as well as the Hg<sup>0</sup> adsorption breakthrough curves. The adsorption capacity of Hg<sup>0</sup> over  $Ce_{0.6}Zr_{0.4}O_2$  was very low, and adsorption equilibration was reached quickly. In contrast, the breakthrough curve over HClpretreated Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub> was very different, and the removal efficiency of elemental mercury was as high as 95% for over 400 min. This result is similar to the results in Figure 2, which showed that HCl treatment with or without O<sub>2</sub> could significantly improve the apparent adsorption capacity of Hg<sup>0</sup> over the catalyst. Because the apparent adsorption capacity of Hg<sup>0</sup> was improved by HCl treatment whether the catalyst was doped with IrO<sub>2</sub>, we infer that doping IrO<sub>2</sub> has no obvious effects on reactions 5-7 (in which HCl functions) in the chemisorption-regeneration mechanism.

Although the H<sub>2</sub>-TPR and XPS results indicate that doping with IrO<sub>2</sub> has a synergistic effect with the Ce-Zr carrier and can facilitate the oxidation capacity of the catalyst, the chemisorption process was improved over IrO2 modified catalyst. However, this result cannot convincingly explain (because of the result in Figure S6) why the addition of 0.2% IrO<sub>2</sub> significantly improved the catalytic efficiency of Hg<sup>0</sup> in the presence of HCl. As stated previously, the Deacon reaction has been proposed as a mechanism for Hg<sup>0</sup> oxidation in the presence of HCl over many catalysts, and IrO2 is an active component for the Deacon reaction. Although Cl<sub>2</sub> has been proven to be not essential for Hg<sup>0</sup> oxidation, it can act as a marker of catalytic activity because Cl atoms on the catalysts can combine with each other to form Cl<sub>2</sub>. Thus, Cl<sub>2</sub> yield over various catalysts was tested to evaluate the Deacon reaction as another possible mechanism. Figure 6 shows that one absorption peak centered at 330 nm is present observed after HCl and  $O_2$  were passed through  $Ce_{0.6}Zr_{0.4}O_2$  catalyst at 350  $^{\circ}\text{C}\textsc{,}$  and the peak can be assigned to Cl\_2. With 0.2% IrO\_2 doping, the intensity of the adsorption peak increased to over 0.04. Obviously, the preparation method could also affect the production of Cl<sub>2</sub>, and the adsorption peak intensity increased to 0.084 over the PVP-promoted IrO<sub>2</sub>/Ce<sub>0.6</sub>Zr<sub>0.4</sub>O<sub>2</sub> catalyst. The Cl<sub>2</sub> yield capacities decreased in the following sequence:  $IrO_2/Ce_{0.6}Zr_{0.4}O_2(PVP) > IrO_2/Ce_{0.6}Zr_{0.4}O_2 > Ce_{0.6}Zr_{0.4}O_2.$ This is the same with catalytic oxidation activity of Hg<sup>0</sup> over these catalysts in the presence of HCl (Figure 1). Therefore, we infer that Hg<sup>0</sup> can be oxidized through the Deacon reaction, in which Cl<sup>-</sup> in catalyst or from adsorbed HCl was first oxidized by active oxygen species to atomic chlorine (reaction 9), after which the formed atomic chlorine atoms could combine to generate gaseous Cl<sub>2</sub> if no Hg<sup>0</sup> was present in gas (reactions 10 and 11). When Hg<sup>0</sup> existed in the gas and was adsorbed to the surface, the elemental mercury could react with Cl atoms to



**Figure 6.**  $Cl_2$  yield over various catalysts. Reaction conditions: 9000 ppm of HCl;  $O_2$ , 4 vol %;  $N_2$  as carrier; flow rate, 40 mL/min; catalyst weight, 60 mg. The space velocity (SV) was approximately  $3.04 \times 10^4$  h<sup>-1</sup>. The temperature was 350 °C.

form HgCl<sub>2</sub> (reaction 12). The overall reaction formula can also be expressed as reaction 8. The Cl<sub>2</sub> yield experiment was also carried out over the catalyst at 150  $^{\circ}$ C, and no obvious peak of Cl<sub>2</sub> was detected over the catalyst, which indicates that the Deacon reaction mechanism might only proceed at relatively high temperatures.

 $2\text{HCl(ads)} + \text{O} \rightarrow 2\text{Cl(ads)} + \text{H}_2\text{O}$ (9)

$$Cl(ads) + Cl(ads) \rightarrow Cl_2(ads)$$
 (10)

$$\operatorname{Cl}_2(\operatorname{ads}) \to \operatorname{Cl}_2(g)$$
 (11)

$$Hg(ads) + 2Cl(ads) \rightarrow HgCl_{2}(ads)$$
(12)

According to the results above, there are two possible mechanisms for the catalytic oxidation of  $Hg^0$  over the  $IrO_2$ -modified catalysts (Figure 7). The first mechanism is the chemisorption–regeneration pathway in which  $Hg^0$  is first adsorbed and oxidized by surface chemisorbed oxygen to HgO. The TPR results and XPS spectra showed that doping of  $IrO_2$  significantly increased the percentage of chemisorbed oxygen, such that the oxidation of  $Hg^0$  was enhanced in the presence of  $IrO_2$ . Some previous studies have also proposed that  $O_2$  can be dissociated more easily on  $IrO_2$ , which could increase the replenishment of chemisorbed oxygen and result in superior chemisorption.<sup>44</sup> The chemisorption process can proceed in the absence of chlorine (lacking both gaseous HCl and Cl<sup>-</sup> on the surface), but  $O_2$  was essential. Next, oxidized mercury could

desorb from the surface in the form of HgO (or HgCl<sub>2</sub> in the presence of gaseous HCl). Thus, the active adsorption sites would be regenerated, and the adsorption of Hg<sup>0</sup> could proceed continuously. In the second mechanism, the Deacon reaction, the adsorbed HCl is first oxidized by active oxygen species to active Cl species, and the resulting Cl atoms can combine with each other to form Cl<sub>2</sub> if no Hg<sup>0</sup> is present in the gas. Our results show that doping with IrO<sub>2</sub> can significantly enhance the Cl yield from the reaction. When Hg<sup>0</sup> is adsorbed to the surface of catalyst, it can react with Cl atoms to form HgCl<sub>2</sub>, which can be released into the gas phase. The major difference between these two mechanisms is whether the adsorbed Hg<sup>0</sup> or HCl is first oxidized by active species. Meanwhile, both of the two proposed oxidation processes could be promoted by doping with IrO<sub>2</sub>.

#### ASSOCIATED CONTENT

### **S** Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.5b05564.

Additional details on the preparation method of the Ce-Zr solid solution. Figures showing the experimental system, The catalytic oxidation of Hg0 over various catalysts under different condition at 350 °C; the catalytic oxidation of Hg0 over  $Ce_{0.6}Zr_{0.4}O_2$  with different condition at 350 °C and 150 °C; the catalytic oxidation of Hg0 over  $IrO_2/Ce_{0.6}Zr_{0.4}O_2$  (PVP) with simulated coal-fired flue gas at 350 and 150 °C; the adsorption curve over  $Ce_{0.6}Zr_{0.4}O_2$ ; and the XPS spectra of Ce, O, and Zr in various catalysts. (PDF)

### AUTHOR INFORMATION

#### **Corresponding Author**

\*Fax: +86 21 54745591; tel: +86 21 54745591; e-mail: nqyan@ sjtu.edu.cn.

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

This study was supported by the National Basic Research Program of China (973) under Grant No. 2013CB430005, and the NSFC projects (21277088, 21077073).

#### REFERENCES

(1) Presto, A. A.; Granite, E. J. Impact of sulfur oxides on mercury capture by activated carbon. *Environ. Sci. Technol.* **2007**, *41* (18), 6579–6584.



Figure 7. Proposed mechanism of Hg<sup>0</sup> oxidation.

#### **Environmental Science & Technology**

(2) Presto, A. A.; Granite, E. J.; Karash, A. Further investigation of the impact of sulfur oxides on mercury capture by activated carbon. *Ind. Eng. Chem. Res.* **2007**, *46* (24), 8273–8276.

(3) Kessler, R. The Minamata Convention on Mercury: a first step toward protecting future generations. *Environ. health. persp.* **2013**, *121* (10), A304.

(4) Gaffney, J. S.; Marley, N. In-depth review of atmospheric mercury: sources, transformations, and potential sinks. *Inter. J. Nanomed.* **2014**, *9*, 1883–1889.

(5) Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.; Friedli, H.; Leaner, J.; Mason, R.; Mukherjee, A.; Stracher, G.; Streets, D.; Telmer, K. Global mercury emissions to the atmosphere from anthropogenic and natural sources. *Atmos. Chem. Phys.* **2010**, *10* (13), 5951–5964.

(6) Presto, A. A.; Granite, E. J. Survey of catalysts for oxidation of mercury in flue gas. *Environ. Sci. Technol.* **2006**, 40 (18), 5601–5609.

(7) Wang, Y. J.; Liu, Y.; Wu, Z. B.; Mo, J. S.; Cheng, B. Experimental study on the absorption behaviors of gas phase bivalent mercury in Cabased wet flue gas desulfurization slurry system. *J. Hazard. Mater.* **2010**, *183* (1–3), 902–907.

(8) Li, X.; Lee, J. Y.; Heald, S. XAFS characterization of mercury captured on cupric chloride-impregnated sorbents. *Fuel* **2012**, *93* (1), 618–624.

(9) Wan, Q.; Duan, L.; He, K.; Li, J. Removal of gaseous elemental mercury over a  $CeO_2-WO_3/TiO_2$  nanocomposite in simulated coal-fired flue gas. *Chem. Eng. J.* **2011**, *170* (2), 512–517.

(10) Liu, Y.; Wang, Y.; Wang, H.; Wu, Z. Catalytic oxidation of gasphase mercury over Co/TiO<sub>2</sub> catalysts prepared by sol-gel method. *Catal. Commun.* **2011**, *12* (14), 1291–1294.

(11) Chen, L.; Li, J.; Ge, M. Promotional Effect of Ce-doped  $V_2O_5$ -WO<sub>3</sub>/TiO<sub>2</sub> with Low Vanadium Loadings for Selective Catalytic Reduction of NOx by NH<sub>3</sub>. *J. Phys. Chem. C* **2009**, *113* (50), 21177–21184.

(12) Niksa, S.; Fujiwara, N. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas. *J. Air Waste Manage. Assoc.* **2005**, *55* (12), 1866–1875.

(13) Senior, C. L. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants. *J. Air Waste Manage. Assoc.* **2006**, *56* (1), 23–31.

(14) Yang, S.; Xiong, S.; Liao, Y.; Xiao, X.; Qi, F.; Peng, Y.; Fu, Y.; Shan, W.; Li, J. Mechanism of  $N_2O$  Formation during the Low-Temperature Selective Catalytic Reduction of NO with  $NH_3$  over Mn–Fe Spinel. *Environ. Sci. Technol.* **2014**, 48 (17), 10354–10362.

(15) Galbreath, K. C.; Zygarlicke, C. J. Mercury transformations in coal combustion flue gas. *Fuel Process. Technol.* **2000**, *65*, 289–310.

(16) Li, X.; Liu, Z.; Kim, J.; Lee, J.-Y. Heterogeneous catalytic reaction of elemental mercury vapor over cupric chloride for mercury emissions control. *Appl. Catal.*, B **2013**, *132*, 401–407.

(17) Xu, W.; Wang, H.; Zhou, X.; Zhu, T. CuO/TiO<sub>2</sub> catalysts for gas-phase Hg<sup>0</sup> catalytic oxidation. *Chem. Eng. J.* **2014**, 243, 380–385. (18) Li, H.; Wu, C.-Y.; Li, Y.; Zhang, J. CeO<sub>2</sub>-TiO<sub>2</sub> catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. *Environ. Sci. Technol.* **2011**, 45 (17), 7394–7400.

(19) Over, H.; Schomäcker, R. What Makes a Good Catalyst for the Deacon Process? *ACS Catal.* **2013**, *3* (5), 1034–1046.

(20) Moser, M.; Mondelli, C.; Amrute, A. P.; Tazawa, A.; Teschner, D.; Schuster, M. E.; Klein-Hoffman, A.; López, N.; Schmidt, T.; Pérez-Ramírez, J. HCl Oxidation on  $IrO_2$ -Based Catalysts: From Fundamentals to Scale-Up. ACS Catal. **2013**, 3 (12), 2813–2822.

(21) Ko, J. H.; Park, S. H.; Jeon, J.-K.; Kim, S.-S.; Kim, S. C.; Kim, J. M.; Chang, D.; Park, Y.-K. Low temperature selective catalytic reduction of NO with NH<sub>3</sub> over Mn supported on  $Ce_{0.65}Zr_{0.35}O_2$  prepared by supercritical method: Effect of Mn precursors on NO reduction. *Catal. Today* **2012**, *185* (1), 290–295.

(22) Wang, Q.; Zhao, B.; Li, G.; Zhou, R. Application of rare earth modified Zr-based ceria-zirconia solid solution in three-way catalyst for automotive emission control. *Environ. Sci. Technol.* **2010**, *44* (10), 3870–3875.

(23) Si, Z. C.; Weng, D.; Wu, X. D.; Ran, R.; Ma, Z. R. NH3-SCR activity, hydrothermal stability, sulfur resistance and regeneration of  $Ce_{0.75}Zr_{0.25}O_2$ -PO<sub>4</sub><sup>3-</sup> catalyst. *Catal. Commun.* **2012**, *17*, 146–149.

(24) Cao, Y.; Gao, Z.; Zhu, J.; Wang, Q.; Huang, Y.; Chiu, C.; Parker, B.; Chu, P.; Pan, W. P. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal. *Environ. Sci. Technol.* **2008**, *42* (1), 256–261.

(25) Chen, W.; Ma, Y.; Qu, Z.; Liu, Q.; Huang, W.; Hu, X.; Yan, N. Mechanism of the Selective Catalytic Oxidation of Slip Ammonia over Ru-Modified Ce–Zr Complexes Determined by in Situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy. *Environ. Sci. Technol.* **2014**, 48 (20), 12199–12205.

(26) Presto, A. A.; Granite, E. J. Noble metal catalysts for mercury oxidation in utility flue gas. *Platinum Met. Rev.* **2008**, *52* (3), 144–154. (27) Yu, T.; Zeng, J.; Lim, B.; Xia, Y. Aqueous-Phase Synthesis of Pt/CeO<sub>2</sub> Hybrid Nanostructures and Their Catalytic Properties. *Adv. Mater.* **2010**, *22* (45), 5188–5192.

(28) Chen, W.; Ma, Y.; Yan, N.; Qu, Z.; Yang, S.; Xie, J.; Guo, Y.; Hu, L.; Jia, J. The co-benefit of elemental mercury oxidation and slip ammonia abatement with SCR-Plus catalysts. *Fuel* **2014**, *133*, 263.

(29) Yang, S.; Guo, Y.; Yan, N.; Wu, D.; He, H.; Xie, J.; Qu, Z.; Jia, J. Remarkable effect of the incorporation of titanium on the catalytic activity and SO<sub>2</sub> poisoning resistance of magnetic Mn–Fe spinel for elemental mercury capture. *Appl. Catal., B* **2011**, *101* (3), 698–708.

(30) Xie, J.; Qu, Z.; Yan, N.; Yang, S.; Chen, W.; Hu, L.; Huang, W.; Liu, P. Novel regenerable sorbent based on Zr–Mn binary metal oxides for flue gas mercury retention and recovery. *J. Hazard. Mater.* **2013**, *261*, 206–213.

(31) Li, H.; Wu, C.-Y.; Li, Y.; Li, L.; Zhao, Y.; Zhang, J. Impact of  $SO_2$  on elemental mercury oxidation over  $CeO_2$ -TiO<sub>2</sub> catalyst. *Chem. Eng. J.* **2013**, *219*, 319–326.

(32) Wan, Q.; Duan, L.; He, K. B.; Li, J. H. Removal of gaseous elemental mercury over a CeO<sub>2</sub>-WO<sub>3</sub>/TiO<sub>2</sub> nanocomposite in simulated coal-fired flue gas. *Chem. Eng. J.* 2011, *170* (2–3), 512–517.
(33) Xie, Y. N.; Li, C. T.; Zhao, L. K.; Zhang, J.; Zeng, G. M.; Zhang, X. N.; Zhang, W.; Tao, S. S. Experimental study on Hg<sup>0</sup> removal from

flue gas over columnar MnO<sub>x</sub>-CeO<sub>2</sub>/activated coke. *Appl. Surf. Sci.* **2015**, 333, 59–67. (34) Lopez-Anton, M. A.; Yuan, Y.; Perry, R.; Maroto-Valer, M. M.

Analysis of mercury species present during coal combustion by thermal desorption. *Fuel* **2010**, *89* (3), 629–634.

(35) Xu, Y.; Mavrikakis, M. Adsorption and dissociation of  $O_2$  on Ir (111). J. Chem. Phys. **2002**, 116 (24), 10846–10853.

(36) Liu, Y.; Wang, Y. J.; Wang, H. Q.; Wu, Z. B. Catalytic oxidation of gas-phase mercury over Co/TiO<sub>2</sub> catalysts prepared by sol-gel method. *Catal. Commun.* **2011**, *12* (14), 1291–1294.

(37) Guo, Y.; Lu, G.; Zhang, Z.; Zhang, S.; Qi, Y.; Liu, Y. Preparation of  $Ce_xZr_{1-x}O_2(x=0.75, 0.62)$  solid solution and its application in Pd-only three-way catalysts. *Catal. Today* **2007**, *126* (3), 296–302.

(38) Zhi Min, L.; Jian Li, W.; Jun Bo, Z.; Yao Qiang, C.; Sheng Hui, Y.; Mao Chu, G. Catalytic combustion of toluene over platinum supported on Ce–Zr–O solid solution modified by Y and Mn. J. Hazard. Mater. 2007, 149 (3), 742–746.

(39) Hong, X.; Li, B.; Wang, Y. J.; Lu, J. Q.; Hu, G. S.; Luo, M. F. Stable Ir/SiO<sub>2</sub> catalyst for selective hydrogenation of crotonaldehyde. *Appl. Surf. Sci.* **2013**, *270*, 388–394.

(40) Xie, J. K.; Qu, Z.; Yan, N. Q.; Yang, S. J.; Chen, W. M.; Hu, L. G.; Huang, W. J.; Liu, P. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery. *J. Hazard. Mater.* **2013**, *261*, 206–213.

(41) Reddy, B. M.; Chowdhury, B.; Smirniotis, P. G. An XPS study of the dispersion of MoO<sub>3</sub> on TiO<sub>2</sub>-ZrO<sub>2</sub>, TiO<sub>2</sub>-SiO<sub>2</sub>, TiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>-ZrO<sub>2</sub>, and SiO<sub>2</sub>-TiO<sub>2</sub>-ZrO<sub>2</sub> mixed oxides. *Appl. Catal., A* **2001**, *211* (1), 19–30.

(42) Prusty, D.; Pathak, A.; Mukherjee, M.; Mukherjee, B.; Chowdhury, A. TEM and XPS studies on the faceted nanocrystals of  $Ce_{0.8}Zr_{0.2}O_2$ . *Mater. Charact.* **2015**, *100*, 31–35.

# **Environmental Science & Technology**

(43) Yang, S. X.; Zhu, W. P.; Jiang, Z. P.; Chen, Z. X.; Wang, J. B.

(43) Fang, S. X.; Zhu, W. F.; Jiang, Z. F.; Chen, Z. X.; Wang, J. B. The surface properties and the activities in catalytic wet air oxidation over CeO<sub>2</sub>-TiO<sub>2</sub> catalysts. *Appl. Surf. Sci.* **2006**, 252 (24), 8499–8505. (44) Wang, H.; Schneider, W. F.; Schmidt, D. Intermediates and spectators in O<sub>2</sub> dissociation at the RuO<sub>2</sub> (110) surface. *J. Phys. Chem. C* **2009**, *113* (34), 15266–15273.