Environmental Science & Technology

Significance of RuO₂ Modified SCR Catalyst for Elemental Mercury Oxidation in Coal-fired Flue Gas

Naiqiang Yan,* Wanmiao Chen, Jie Chen, Zan Qu,* Yongfu Guo, Shijian Yang, and Jinping Jia

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

S Supporting Information

ABSTRACT: Catalytic conversion of elemental mercury (Hg^0) to its oxidized form has been considered as an effective way to enhance mercury removal from coal-fired power plants. In order to make good use of the existing selective catalytic reduction of NO_x (SCR) catalysts as a cobenefit of Hg⁰ conversion at lower level HCl in flue gas, various catalysts supported on titanium dioxide (TiO₂) and commercial SCR catalysts were investigated at various cases. Among the tested catalysts, ruthenium oxides (RuO₂) not only showed rather high catalytic activity on Hg⁰ oxidation by itself, but also appeared to be well cooperative with the commercial SCR catalyst for Hg⁰ conversion. In addition, the modified SCR catalyst with RuO₂ displayed an excellent tolerance to SO₂ and ammonia without any distinct negative effects on NO_x reduction and SO₂ conversion. The demanded HCl concentration for Hg⁰ oxidation can be reduced dramatically, and Hg⁰ oxidation efficiency over RuO₂ doped SCR catalyst was

over 90% even at about 5 ppm HCl in the simulated gases. Ru modified SCR catalyst shows a promising prospect for the cobenefit of mercury emission control.

■ INTRODUCTION

Mercury has been listed as a hazardous and toxic pollutant under Title III of the 1990 Clean Air Act Amendments (CAAA) in the United States.¹ Based on the 25th Governing Council Session of United Nations Environment Programme (UNEP), the Negotiation to launch the UNEP Mercury Treaty has been initiated, and it is expected to be finalized in 2013.² Coal-fired power plants are the major anthropogenic mercury emission sources in China and The U.S. because of the huge coal consumption for power generation.^{1–3} Therefore, it is stringent to find any effective ways to reduce mercury emission from coal-fired utilities.

Mercury emission from coal-fired flue gas generally presents in three forms, elemental mercury (Hg^{0}) , gaseous oxidized mercury (Hg^{2+}) and the particulate-bound mercury $(Hg^{(p)})$, mainly in oxidized form).^{4,5} The distributions of these forms are mainly dependent on the chlorine content in coal and the combustion conditions. With the existing air pollution control devices (APCD), most of the oxidized and particulate-bound mercury can be removed as the cobenefit, for instance, $Hg^{(p)}$ will be effectively captured, along with fly ash particles, in electrostatic precipitators (ESPs) or baghouses; Hg^{2+} is soluble in water and therefore it can be removed efficiently by wet flue gas desulfurization equipments (WFGD). However, Hg^{0} is the most difficult to be removed because of its high volatility and low solubility in water. The conversion of Hg^{0} to its oxidized form can thus facilitate its capture from the flue gas by APCD.⁶⁻⁹

Some transition metal catalysts, including those for the selective catalytic reduction of nitric oxides (SCR) have been observed to be helpful to the oxidation of Hg^0 to Hg^{2+} when

there existed sufficient HCl in the flue gases.^{7,10-12} Mn/Al₂O₃ and Mo modified catalysts have been observed to display high Hg⁰ catalytic efficiency in the flue gas.^{10,11}Some noble metal catalysts, such as gold (Au) and palladium (Pd), have also been tentatively used as catalysts for elemental mercury conversion,¹² but they are too expensive for industrial applications. With the spread of SCR installation in coal-fired power plant for NO_x emission control, how to make good use of SCR catalyst for Hg⁰ conversion has been paid more attention.^{8,13–17} However, it has been observed that the conventional SCR catalysts were not effective enough for Hg⁰ conversion in the flue gas burnt the low chlorine coal. Moreover, most flue gas with high Hg⁰ distribution was just lacking in HCl and the design of the traditional SCR catalyst without the intention for Hg⁰ conversion. Also, SO_2 and ammonia have been observed to inhibit the oxidation of Hg^0 over the conventional SCR catalysts.¹⁶ Therefore, how to enhance the catalytic activity for Hg⁰ oxidation at low level of HCl (e.g., <10 ppm) has become an important research scope to the cobenefit performance of SCR catalysts.

It has been recognized that the oxidation of Hg^0 over catalysts in the presence of HCl might experience series reactions, such as Deacon reaction (through which HCl can be oxidized to Cl₂ or Cl atom by oxygen) or Mars-Maessen mechanisms.^{7,10,16} The latest research has indicated that RuO₂ over TiO₂ has been

Received:	January 19, 2011
Revised:	May 31, 2011
Accepted:	May 31, 2011
Published:	June 10, 2011

proved to be a very promising catalyst for Deacon reactions, through which HCl can be converted to Cl₂ effectively.^{18,19} So RuO₂ is expected to be a potential catalyst for Hg⁰ conversion in the presence of HCl. Since the traditional SCR catalysts often employ TiO₂ as the carrier, it is possible to introduce RuO₂ to SCR catalyst for its multipurpose. In addition, the commercial price of Ru was just about 10-20% of that of Pt or Pd even though it is usually listed as noble metals, and the cost of the catalyst with low content of RuO_2 is acceptable in application. However, the roles of RuO_2 as a catalyst by itself or cooperated with other components for Hg^0 oxidation have never been involved in the previous research. Therefore, the performance of RuO_2 over TiO_2 as the catalyst of Hg^0 conversion was investigated, and it was tentatively used to modify SCR catalyst to improve the cobenefit of Hg⁰ conversion from SCR catalysts at low HCl concentration. Meanwhile, the behaviors of the modified SCR catalyst in the reduction of NO_{xy} the oxidation of SO_{2y} and the tolerance to SO₂ and NH₃ were also considered. The catalysts were characterized with different techniques, such as BET, XRD, ICP, XPS, etc.

EXPERIMENTAL SECTION

Materials. Commercially available TiO₂ powder was mainly used as the carrier of various catalysts, which is a standard material for all purposes (Degussa P25) and contains anatase and rutile phases in a ratio of about 3:1.²⁰ The original powder consisted of TiO₂ particles with 25-85 nm of the diameter. All chemicals used for the catalysts preparation were of analytical grades, and purchased from Sigma-Aldrich Co. and Sino-pharm Chemical Reagent Co. The Gases of SO₂ (100%), ammonia (20%) and HCl (5000 ppm) were produced by Dalian Date Gas Co. In order to evaluate the performance of the typical SCR catalyst for Hg⁰ conversion, a commercial available SCR catalyst $(V-W/TiO_{2})$ denoted as SCR₂) was used as the reference, in which WO₃ (about 4.2%), V_2O_5 (about 0.52%) and TiO₂ (as the carrier). Meanwhile, a self-made SCR catalyst consisted of 1% of tungsten oxide and 1% of V₂O₅ (denoted as SCR₁)was used as the comparison.

Catalysts Preparation. Several TiO₂-supported catalysts, which included Ru/TiO₂, Mn/TiO₂, Cu/TiO₂, V/TiO₂, W/TiO₂, and Cr/TiO₂ were tested, and the weight percentage of the metallic oxides to TiO₂ was set at about 1% for the single metallic catalyst. Meanwhile, W-V/TiO₂, Ru-V/TiO₂, Ru-W-V/TiO₂, and Ru/SCR₂ were also tested as well, in which the weight percentage of RuO₂, WO₃ and/or V₂O₅ was set at 1%, respectively, if it was not stated clearly. All TiO₂ supported or modified SCR catalysts were prepared by the multi-impregnation process to ensure all the components in the solutions to be impregnated on the carrier.^{12,13} The dried catalysts were calcined at 673 K for 2 h and at 773 K for 2 h in air.

Catalytic Activity Evaluation. The catalytic activity was evaluated in a fixed-bed reactor (a quartz tube, with the inner diameter of 5 mm), in which 30 mg of the catalyst (40–60 meshes particles, with the bulk volume of 0.051 mL) was filled. The simulated flue gases compositions were prepared in situ, and Hg⁰ vapor was prepared from the Hg⁰ permeation unit and was blended with the gases before they entered the reactor.¹⁰ The reactions were mainly performed under atmospheric pressure and at 423–623 K which was controlled by a tubular-furnace. The gas flow rate was 40 L/h corresponding to a space velocity (SV) of 7.9×10^5 h⁻¹ for Hg⁰ conversion tests, which was by far higher than that for the actual SCR operation (4000–10000 h⁻¹).

Employing high SV was based on two considerations: first, the gas-solid contacting condition in a fixed bed was much better than that in honeycombs or plates catalyst configuration; second, only the tail section of SCR in low ammonia environment may be effective to the catalytic conversion of Hg⁰, which corresponded to a higher SV than that for SCR operation. The inlet Hg⁰ concentration in the gas was controlled at about 50 ppby, which was helpful to shorten the initial adsorption time and to minimize the relative error from the continuous data acquisition. The continuous monitor of Hg⁰ concentration in the effluent stream and the balance tests of mercury before and after the conversion were also similar to our previous study,¹⁰ and the total mercury across the reactor appeared to be well balanced (see S1.1 and Figure S1 in the Supporting Information (SI)). The concentration of NO and SO₂ were measured with the flue gas analyzer (Testo 350-Pro). HCl, NH₃ and Cl₂ at low concentration were analyzed with specific detecting tubes (Gastec). SO₃ in the gas across the catalysts was trapped according to EPA method 8, in which 80% isopropyl alcohol (IPA) aqueous solution was as a trapping solution for gaseous SO₃.²¹ Ionic chromatography (Metrohm-MIC,) was used to quantitatively measure the concentration of sulfate in the solution.

Characterization of the Catalysts. To determine the crystals species distribution in the catalyst, X-ray diffraction (XRD) measurements were carried out with a diffractometer (D/max-2200/PC, Rigaku, Japan) using Cu–Kα radiation. ICP analysis (Iris Advangtage 1000, Theremo) was used to measure Ru contents in the prepared catalysts. X-ray photoelectron spectroscopy (XPS,Thermo ESCALAB 250) measurements were used to determine the Ru3d5 binding energies with Al Ka radiation $(h\nu = 1486.6 \text{ eV})$. Transmission electron microscopy (TEM) was used to investigate microstructures of the catalysts with an electron microscope (JEM-2010, JEOL, Japan). With the attachment of the energy dispersive X-ray Spectrometer (EDX), the precise elemental composition of materials can be obtained with high spatial resolution. The specific surface area of the catalysts was tested using Brunauer-Emmett-Teller (BET) method (ASAP 2010, Micromeritics Inc.). In order to investigate the redox performance of various catalyst, hydrogen temperature program reduction $(H_2$ -TPR) experiments were carried out on a TPR-5000 (Tianjin Xianquan) by increasing the temperature from 50 to 900 °C at a rate of 10 °C/min.

RESULTS AND DISCUSSION

Character of the Prepared Catalysts. The BET area were determined to be about 53.6 m^2/g , 46.1 m^2/g , 48.4 m^2/g and 59.9 m²/g for TiO₂, Ru/TiO₂, Mn(1%)/TiO₂ and Ru(1%)/ SCR₁, respectively. The content of Mn, Ru and other metals in the catalysts were verified with ICP analysis, and the actual Ru contents were consistent with the expected value in preparation (within 15% of the relative error, Table S1 in SI). The XRD patterns of TiO₂ (Figure S2 in SI) indicates that TiO₂(Degussa P25) has two crystal types, anatase and rutile, respectively. In addition, TiO_2 in SCR₂ and Ru/SCR₂ is mainly in the form of anatase. The XRD pattern of Ru/TiO₂ and Ru/SCR₂ shows a very weak peak of RuO₂ at the two theta degree of 35.1, while the other peak may be included in the strong peak at the two theta degree of 54. By comparing with the reference spectrum, Ru mainly presented in the form of RuO_2 . The weak peak of RuO_2 indicates that most RuO2 on TiO2 is well dispersed in noncrystalline form.

TEM image (Figure 1) confirms the crystalline TiO₂ and SCR_2 particles are between 20 and 100 nm. Also, the SAED patterns of Ru/TiO₂ (at the right down corner of TEM pictures) showed that Ru/TiO₂ appears to be the poly crystal diffraction rings within the same scanned surface area, which indicated the particles of RuO₂ are very small. Moreover, the energy dispersive X-ray Spectrometer (EDX) analysis (at the left up corner of TEM pictures) also indicated that the even dispersion of RuO₂ on the surfaces of TiO₂ or SCR₂ nanoparticles.

 RuO_2/TiO_2 as the Monometallic Catalysts. The catalytic oxidation efficiencies of Hg^0 over monometallic catalysts with TiO_2 as the carrier were first compared at various conditions

Figure 1. TEM micrographs, SAED patterns and EDX of (a)TiO₂, (b) Ru/TiO₂, (c) SCR₂ (V-W/TiO₂) and (d) Ru/SCR₂.

(Figure S3 in SI). Among the tested catalysts with TiO_2 as the carriers, Ru/TiO_2 catalyst displayed remarkable promotion to Hg^0 oxidation among the tested catalysts even at 423 K, which indicated that RuO_2 showed better catalytic activity at lower temperature. Though the catalytic activities of some transition metals (e.g., Mn/TiO_2 and Cu/TiO_2) appeared to be very sensitive to SO_2 , the effect was relatively slight for Ru/TiO_2 and Hg^0 conversion was remained at about 85% in the presence of 500 ppm SO_2 , with a drop of about 9% at 623K. Therefore, it has been clearly demonstrated that Ru was an efficient element for the catalytic oxidation of Hg^0 .

RuO₂ Modified SCR Catalyst. In order to make good use of SCR catalyst for the cobenefit of Hg⁰ oxidation, RuO₂ was used as the dopant to SCR and its related catalysts. For the conventional SCR catalyst, V₂O₅ and WO₃ are the principal catalytic compositions with TiO₂ as the carrier. The interactions of RuO₂ with these elements for the catalysis were investigated, and the results are shown in Figure 2. The Hg⁰ conversion efficiency over V-W/ $TiO_2(SCR_1)$ and the commercial catalyst (SCR₂) were close to each other, which were less than the results in the literature¹⁶ because much higher space velocity was employed in this study. Meanwhile, Hg⁰ conversion over V/TiO₂ catalyst was also close to that over SCR1 or SCR2, but W/TiO2 catalyst showed less activity to Hg⁰ oxidation. Thus V₂O₅ was considered to be the main active component to Hg⁰ conversion in SCR catalyst. However, the different content of V_2O_5 in SCR₁(about 1%) and SCR₂(0.52%) did not result in a remarkable difference in Hg⁰ conversion.

Although SCR and its related catalysts were less effective at low HCl concentration, $Ru-V-W/TiO_2$ (Ru/SCR_1) and Ru/SCR_2 displayed rather high activities to Hg^0 oxidation. Both can obtain over 95% of Hg^0 oxidation efficiencies at 623 K without SO_2 . Meanwhile, both the catalysts displayed excellent tolerance to SO_2 for Hg^0 oxidation compared with Ru/TiO_2 , and Hg^0 oxidation efficiency drop only about 3-5% in the presence of 500 ppm SO_2 .

Effect of Ru Loading Content and HCl Concentration on Hg^{0} Conversion. The effect of RuO₂ loading amount on Hg^{0} oxidation was determined. As shown in Figure 3, the oxidation efficiencies of Hg^{0} rise with the increase of RuO₂ loading on TiO₂, and the increasing trend of Hg^{0} oxidation efficiencies was

Figure 2. Comparison of the Hg⁰ catalytic oxidation efficiencies over various multimetallic TiO₂-supported catalysts and SCR catalyst with 5 ppm HCl.

Figure 3. Effect of Ru loading on TiO_2 and SCR catalysts on the Hg⁰ oxidation efficiency at 623K and 5 ppm HCl.

more remarkable as it rise from 0.05% to 0.5%. Then it tended to be flat when the Ru loading increased from 0.5% to 2%. As for the RuO₂ modified SCR catalysts, Hg⁰ conversion increased from about 37% to 57% with 0.05% of Ru addition in the presence of 500 ppm SO₂ and 5 ppm HCl at 623 K, and it was about 84% and 90% with 0.2% and 0.5% of Ru, respectively. Considering on the consumption of Ru and the enhancement of Hg⁰ conversion, the optimal Ru content in SCR was at about 0.5%.

The effects of HCl concentration on Hg^0 conversion over Ru/TiO_2 and Ru/SCR_2 catalyst are shown in Figure 4. With the increase of HCl concentration from 2 ppm to 12 ppm, Hg^0 oxidation efficiency went up accordingly, and it became flat as the HCl concentration was above 5 ppm at 623K. Hg^0 oxidation efficiency over Ru/SCR_2 catalyst (1% of Ru) was more than 90% with only about 5 ppm HCl. However, Hg^0 oxidation efficiency over the original SCR catalyst was just about 47% even with more than 10 ppm HCl, which was even less than that with 2 ppm HCl on Ru/SCR_2 . Therefore, Ru/SCR is very suitable for the catalyst oxidation of Hg^0 in flue gas with low level HCl from low-chlorine coal utilization.

Effect of Various Gaseous Components on Hg⁰ Conversion. In addition to SO₂, the effects of other gaseous components on Hg⁰ oxidation over various catalysts were also evaluated (Figure S4 in SI). It was found that NO itself displayed a slightly promotional effect on Hg⁰ oxidation over the catalysts(with the increase of 2–5%), which is consistent with the similar research.¹³ The presence of water vapor (4%) did not show significant effect on Hg⁰ oxidation at 623 K. Hg⁰ conversion in the simulated flue gas with various components decreased slightly due to the inhibition of SO₂(about 1–4% of the drop)

However, the presence of NH_3 showed obvious inhibition on the Hg^0 oxidation by HCl(Figure 5). It was observed that NH_3 can strongly compete with Hg^0 to adsorb on the catalyst in the absence of HCl. Even with 5 ppm HCl, Hg^0 conversion sharply dropped to only about 15% over Ru/SCR_2 if 260 ppm NH_3 presented in the gas. Interestingly, the coexistence of NO with NH_3 can significantly mitigate such inhibition, and Hg^0 conversion efficiency recovered to 65% with 300 ppm NO and 260 ppm NH_3 in the gas. Moreover, Ru/SCR_2 showed better NH_3 tolerance than Ru/TiO_2 for Hg^0 conversion, which can be tentatively attributed the effective consumption of NH_3 through NO reduction over SCR catalysts. In addition, the Hg^0 oxidation efficiency over Ru/SCR_2 was still as high as 90% if 30 ppm NO

Figure 4. Dependence of Hg^0 oxidation efficiencies on HCl concentration over Ru/TiO₂ and Ru/SCR catalysts at 623 K.

and 30 ppm NH₃ were presented, respectively. Therefore, the downstream section of SCR catalyst appeared to be more effective to Hg^0 conversion as NH₃ concentration decreased, and Ru modified catalyst can be installed at the tail section of the SCR.

Effect of RuO_2 on NO Reduction and SO_2 Oxidation. In addition, the effect of the RuO_2 on NO reduction over the modified SCR_2 catalysts were also investigated (Figure S5 in SI). It was found the presence of RuO_2 in the catalysts did not show obvious effect on NO conversion by the comparison of the catalysts with and without RuO_2 . Therefore, RuO_2 appeared to be well cooperative to SCR catalyst for Hg^0 conversion.

The oxidation degree of SO₂ to SO₃ over SCR catalysts is always an important concern because of the negative effect SO₃ on catalyst and smoke opacity.²¹ The conversion of SO₂ across SCR₂, Ru/SCR₂ catalysts were measured, and it was found that both SCR₂ and Ru/SCR₂ showed imperceptible effect on SO₃ formation in the tested condition (Figure S6 in SI, both within 1% of SO₂ conversion), which indicated that RuO₂ showed a good catalytic selectivity for Hg⁰ conversion. Therefore, the sideeffect of RuO₂ employed in SCR catalysts was negligible on NO reduction and SO₃ formation

Catalytic Mechanism of RuO_2 to Hg^0 Conversion TPR Performance. The temperature program reduction (TPR) by hydrogen of SCR₂, Ru/TiO₂ and Ru/SCR₂ catalysts were tested (Figure S7 in SI). For SCR₂, the peaks at about 510 and 820 °C corresponded to the reduction of V⁵⁺-V³⁺ and W⁶⁺-W⁰, respectively. The peak of Ru⁴⁺-Ru⁰ for Ru/Ti catalyst was at about 150 °C. However, the peak of Ru⁴⁺-Ru⁰ and V⁵⁺-V³⁺ shifted to 240 and 290 °C with the overlap, which might implicate that Ru–V complex was formed on the catalysts. Thus the activity of V in catalyst was improved, and Ru then showed a better tolerance to SO₂ . According to the tested TPR spectrum, the presence of RuO₂ can make the reduction of V₂O₅ more easily, which can be attributed to the hydrogen spillover behavior of Ru.

The TOF_{Hg^0} parameter catalyst turnover frequency (TOF_{Hg^0}) is a basic parameter to evaluate catalyst's activities.²² Equation 1 can be used to calculate the TOF_{Hg^0} .

$$TOF_{Hg^0} = \frac{converted \ Hg^0 per-minute(mole/min)}{ruover \ the \ catalyst(mole)}$$
(1)

It was obvious that $\text{TOF}_{\text{Hg}^{0}}$ decreased with Ru content doped in the catalyst (Figure S8 in SI). For Ru/TiO₂, it was 19.5 × 10⁻⁵ and 2.3 × 10⁻⁵ min⁻¹ for 0.2% and 2% of Ru content (without SO₂),

Figure 5. Effect of ammonia on Hg⁰ adsorption and conversion over SCR₂, Ru/TiO₂ and Ru/SCR₂ catalysts with various cases at 623 K.

respectively. The results implicated that Ru was well dispersed on the catalyst at low Ru content and most active sites can participate in the reaction. However, RuO₂ would aggregate to form larger particles with the increase of Ru content. The existence of V in the catalyst was helpful to Ru to keep its high TOF_{Hg^0} , and the drop of TOF_{Hg^0} for Ru/SCR₂ (1% of Ru) was only about 2% versus about 10% for Ru/TiO₂ in the presence of 500 ppm SO₂.

Ru Involved Deacon Reaction. As mentioned above, Deacon reaction might be the main pathway for Hg^0 catalytic oxidation even though it has not been well understood yet.^{7,10} Therefore, the performance of Deacon reaction of RuO_2/TiO_2 , Ru/SCR_2 and MnO_x/TiO_2 were preliminarily evaluated according to the yield of chlorine in this study. As shown in Figure 6, the yield of Cl_2 by Ru/TiO_2 catalyst was about 5 times higher than that with Mn/TiO_2 , which indicated that RuO_2 was more effective than MnO_x for Cl_2 production. Meanwhile, the production of Cl_2 over Ru/SCR_2 was about 50% higher than that by Ru/TiO_2 , in which V and/or W appeared to be synergetic with RuO_2 for the Deacon reaction.

In addition, the production of Cl_2 can be totally inhibited in the presence of 500 ppm SO₂ for all catalysts. Mn/TiO₂ almost lost all its activity to produce Cl_2 after contacting with SO₂ for 3 h. The produced Cl_2 by Ru/SCR₂ were nearly fully recoverable when SO₂ was removed from the gas, but it was with a loss about 60% for Ru/TiO₂. So V and/or W were believed to be helpful to improve the sulfur tolerance of Ru/SCR catalysts.

The reason why Ru/TiO₂ displays higher activity to Deacon reaction can be explained from the difference of the possible reaction mechanisms among the catalysts. As indicated in the previous research,^{20,21} Deacon reaction over RuO₂ catalyst was considered to be different from that on any transition metal oxides (e.g., MnO₂), and the conversion of HCl to Cl₂ can be occurred at the existing coordinative unsaturated sites over surface Ru atoms (cus-Ru), which will play an important role on Deacon reaction.

In addition, though it has been found that the production of Cl_2 was completely suppressed in the presence of SO_2 even for Ru/TiO_2 and Ru/SCR_2 catalyst, the Hg^0 conversion efficiency still remained at about 90% in the presence of 500 ppm of SO_2 . The results indicated that the production of Cl_2 was very

Figure 6. Cl₂ concentration produced by Deacon reaction over Mn/ TiO₂, Ru/TiO₂, and Ru/SCR catalyst at 623 K.

sensitive to SO₂, and the combination reaction of atomic chlorines to form Cl₂ may be readily blocked by SO₂. In this situation, the catalytic oxidation of Hg⁰ over catalysts was just dependent on the atomic chlorines produced by the hydrogen abstraction reaction from HCl, which was still very effective for Hg⁰ oxidation and less sensitive to SO₂. The results also implicated that the partial Deacon reaction (to form atomic chlorine instead of Cl₂) was enough to oxidize Hg⁰.

Hg⁰ can be adsorbed on both virgin cus-Ru sites and then chlorinated by atomic chlorine on the near cus-Ru sites, and the gaseous Hg⁰ can even react with atomic chlorine directly.

$$\begin{array}{ccc} Cl & Cl \\ | & -Ru-O-Ru-O-Ru-O- +Hg^0 \rightarrow -Ru-O-Ru-O-Ru-O- + HgCl_2 \end{array}$$
 (2)

As for the Ru/SCR₂ catalyst, it appeared to be less sensitive to SO_2 . Though the production of Cl_2 was completely inhibited in the presence of SO_2 , it can be fully recovered if SO_2 was excluded from the gas. Therefore, the presence of V and W in Ru-SCR

seemed to be helpful for Deacon reaction to the sulfur-resistance, which was consistent to its performance for Hg^0 conversion in the presence of SO₂. The multimetallic centers over the catalyst might be favor to resist sulfur poison.

In addition, the XPS spectra of Ru (Ru3d5/2) indicates that Ru is in the form of RuO₂(around at 280.8ev) on the catalysts (SI Figure S9). The XPS spectrum of Ru3d5/2 on Ru/TiO₂ after contacting with HCl and Hg⁰ (in the absence of SO₂) almost remains the same as the fresh, which indicated that RuO₂ was stable to Deacon reaction and Hg⁰ conversion reaction. The main spectrum of Ru3d5 in Ru/TiO₂ was observed to slightly shift to lower binding energy (about 0.15 eV) after contacting with SO₂ for 10 hrs. The spectrum of Ru3d5 for Ru/SCR₂ contacting with SO₂ remained almost the same with the fresh, which might implicate that RuO₂ on Ru/SCR₂ is more stable to SO₂. Meanwhile, the spectrum of S2p on Ru/TiO₂ was much stronger than that on Ru/SCR₂, which indicated that SO₂ was more readily deposited to form sulfate on Ru/TiO₂ than that on Ru/SCR₂. In summary, RuO₂ modified SCR catalyst appears to be very effective to Hg⁰ conversion from coal-fired flue at high space velocity with low level of HCl, and only using small segment of the modified catalyst at the tail section of SCR may work efficiently for Hg⁰ conversion, which deserves to the further demonstration in a large scale.

ASSOCIATED CONTENT

Supporting Information. The typical mercury mass balance, ICP analysis, XRD patterns, the effect of various components, the conversion of NO and SO₂, H₂-TPR curves, turnover frequency, XPS analysis. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Phone:+86 21 54745591; fax: +86 21 54745591; e-mail: nqyan@sjtu.edu.cn (N. Q. Yan); quzan@sjtu.edu.cn(Z. Qu).

ACKNOWLEDGMENT

This study was supported by NSFC project (21077073) and the High-Tech R&D Program of China (863) under Grant No.2007AA06Z340. Thanks to Ms. Wenying Zhang and Dr. Jiangkun Xie for the help with IC, ICP, XPS, and TEM analysis.

REFERENCES

(1) Pavlish, J. H.; Sondreal, E. A.; Mann, M. D.; Olson, E. S.; Galbreath, K. C.; Laudal, D. L.; Benson, S. A. State review of mercury control options for coal-fired power plants. *Fuel Process. Technol.* **2003**, *82*, 89–165.

(2) United Nations Environment Programme (UNEP), United States Proposes Decision on Mercury at 25 GC/GMEF. http://www.unep. org/pdf/Draft decision-approved.pdf (accessed February 2009).

(3) Wu, Y.; Wang, S. X.; Streets, D. G.; Hao, J. M.; Chan, M.; Jiang, J. K. Trends in anthropogenic mercury emissions in China from 1995 to 2003. *Environ. Sci. Technol.* **2006**, *40*, 5312–5318.

(4) Granite, E. J.; Myers, C. R.; King, W. P.; Stanko, D. C.; Pennline, H. W. Sorbents for mercury capture from fuel gas with application to gasification systems. *Ind. Eng. Chem. Res.* **2006**, *45*, 4844–4848.

(5) Yan, N. Q.; Liu, S. H.; Chang, S. G.; Miller, C. Method for the study of gaseous oxidants for the oxidation of mercury gas. *Ind. Eng. Chem. Res.* **2005**, *44*, 5567–5574.

(6) Wang, Y. J.; Liu, Y.; Wu, Z. B.; Mo, J. S.; Chen, B. Experimental study on the absorption behaviors of gas phase bivalent mercury in Ca-based wet flue gas desulfurization slurry system. *J. Hazard. Mater.* **2010**, *183*, 902–907.

(7) Presto, A. A.; Granite, E. J. Survey of catalysts for oxidation of mercury in flue gas. *Environ. Sci. Technol.* **2006**, *40*, 5601–5609.

(8) Cao, Y.; Gao, Z. Y.; Zhu, J. S.; Wu, Q. H.; Huang, Y. J.; Chiu, C. C.; Parker, B.; Chu, P.; Pan, W. P. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal. *Environ. Sci. Technol.* **2008**, 42, 256–261.

(9) Wang, S. X.; Zhang, L.; Ancor, M. P.; Zhao, Y.; Hao, J. M. Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China. *J. Air Waste Manage. Assoc.* **2010**, *60*, 22–730.

(10) Li, J. F.; Yan, N. Q.; Qu, Z.; Qiao, S. H.; Yang, S. J.; Guo, Y. F.; Liu, P.; Jia, J. P. Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al₂O₃ at lower temperatures. *Environ. Sci. Technol.* **2010**, *44*, 426–431.

(11) Qiao, S. H.; Chen, J.; Li, J. F.; Qu, Z.; Liu, P.; Yan, N. Q.; Jia, J. Q. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnO_x/aumina. *Ind. Eng. Chem. Res.* **2009**, *48*, 3317–3322.

(12) Zhao, Y. X.; Mann, M. D.; Pavlish, J. H.; Mibeck, B. A. F.; Dunham, G. E.; Olson, E. S. Application of gold catalyst for mercury oxidation by chlorine. *Environ. Sci. Technol.* **2006**, *40*, 1603–1608.

(13) Niksa, S.; Fujiwara, N. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas. J. Air Waste Manage. Assoc. **2005**, 55, 1866–1875.

(14) Lee, C. W.; Srivastava, R. K.; Ghorishi, S. B.; Hastings, T. W.; Stevens, F. M. Investigation of selective catalytic reduction impact on mercury speciation under simulated NO_x emission control conditions. *J. Air Waste Manage. Assoc.* **2004**, *54*, 1560–1566.

(15) Li, Y.; Murphy, P. D.; Wu, C. Y.; Powers, K. W.; Bonzongo, J. C. J. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas. *Environ. Sci. Technol.* **2008**, *42*, 5304–5309.

(16) Kamata, H.; Ueno, S. I.; Naito, T.; Yukimura, A. Mercury oidation over the $V_2O_5(WO_3)/TiO_2$ cmmercial SCR ctalyst. *Ind. Eng. Chem. Res.* **2008**, *47*, 8136–8141.

(17) Chen, L.; Li, J. H.; Ge, M. F. Promotional effect of Ce-doped V_2O_5 -WO₃/TiO₂ with low vanadium loadings for selective catalytic reduction of NO_x by NH₃. *J. Phys. Chem. C.* **2009**, *113*, 21177–21184.

(18) Lopez, N.; Gomez-Segura, J.; Marin, R. P.; Perez-Ramirez, J. Mechanism of HCl oxidation (Deacon process) over RuO₂. *J. Catal.* **2008**, 255, 29–39.

(19) Zweidinger, S; Crihan, D.; Knapp, M.; Hofmann, J. P.; Seitsonen, A. P.; Weststrate, C.; Lundgren, J. E.; Andersen, J. N.; Over, H. Reaction mechanism of the oxidation of HCl over RuO₂(110). *J. Phys. Chem. C* **2008**, *112*, 9967–9969.

(20) Wu, Z. B.; Jin, R. B.; Wang, H. Q.; Liu, Y. Effect of ceria doping on SO₂ resistance of Mn/TiO₂ for selective catalytic reduction of NO with NH₃ at low temperature. *Catal. Commun.* **2009**, *10*, 935–939.

(21) Cao, Y.; Zhou, H. C.; Wu, J.; Chen, C. W.; Pan, W. P. Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods. *Environ. Sci. Technol.* **2010**, *44*, 3429–3434.

(22) He, H.; Li, Y.; Zhang, X. L.; Yu, Y. B.; Zhang, C. B. Precipitable silver compound catalysts for the selective catalytic reduction of NO_x by ethanol. *Appl. Catal.*, A **2010**, 375, 258–264.