Gaseous Elemental Mercury Capture from Flue Gas Using Magnetic Nanosized \((\text{Fe}_{3-x}\text{Mn}_x)_{1-\delta}\text{O}_4\)

Shijian Yang, † Naiqiang Yan, ‡ Yongfu Guo, † Daqing Wu, † Hongping He, † Zan Qu, † Jianfeng Li, † Qin Zhou, ‡ and Jingping Jia †

† School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 P. R. China
‡ Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Wushan, Tianhe District, Guangzhou, 510640 P. R. China
§ State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085 P. R. China

Supporting Information

ABSTRACT: A series of nanosized \((\text{Fe}_{3-x}\text{Mn}_x)_{1-\delta}\text{O}_4\) \((x = 0, 0.2, 0.5, \text{and} 0.8)\) were synthesized for elemental mercury capture from the flue gas. Cation vacancies on \((\text{Fe}_{3-x}\text{Mn}_x)_{1-\delta}\text{O}_4\) can provide the active sites for elemental mercury adsorption, and Mn\(^{3+}\) cations on \((\text{Fe}_{3-x}\text{Mn}_x)_{1-\delta}\text{O}_4\) may be the oxidizing agents for elemental mercury oxidation. With the increase of Mn content in the spinel structure, the percents of Mn\(^{3+}\) cations and cation vacancies on the surface increased. As a result, elemental mercury capture by \((\text{Fe}_{3-x}\text{Mn}_x)_{1-\delta}\text{O}_4\) was obviously promoted with the increase of Mn content. \((\text{Fe}_{2.2}\text{Mn}_{0.8})_{1-\delta}\text{O}_4\) showed an excellent capacity for elemental mercury capture \((>1.5 \text{ mg g}^{-1} \text{ at } 100-300 \degree \text{C})\) in the presence of SO\(_2\) and HCl. Furthermore, \((\text{Fe}_{2.2}\text{Mn}_{0.8})_{1-\delta}\text{O}_4\) with the saturation magnetization of 45.6 emu g\(^{-1}\) can be separated from the fly ash using magnetic separation, leaving the fly ash essentially free of sorbent and adsorbed Hg. Therefore, nanosized \((\text{Fe}_{2.2}\text{Mn}_{0.8})_{1-\delta}\text{O}_4\) may be a promising sorbent for the control of elemental mercury emission.

INTRODUCTION

Mercury is a major pollutant because of its toxicity, mobility, and bioaccumulation in the ecosystem and food chain. The emission of mercury from anthropogenic activities is a serious concern in both the developed and developing countries. Coal-fired utility boilers are currently the largest single-known source of anthropogenic mercury emissions. Mercury exists in three forms in the flue gas: elemental mercury \((\text{Hg}^0)\), oxidized mercury \((\text{Hg}^{2+})\), and particle-bound mercury \((\text{Hg}^0)\). Because elemental mercury is difficult to be removed by currently available pollution control devices, it is the major mercury species emitted in the flue gas.

Many technologies have been investigated to capture elemental mercury from the flue gas. Sorbents/catalysts for elemental mercury capture studied to date mainly fall into one of three groups: carbon-based sorbents, selective catalytic reduction catalysts, and metals and metal oxides. Now, the mercury-sorbent materials are extremely restricted in the application for at least three reasons: sorbent recovery, removal of toxin from the industrial waste, and operation cost.\(^2\)\(^-\)\(^5\)

The separation of sorbent from the fly ash can be solved by the magnetic property of sorbent materials.\(^2\)\(^-\)\(^5\) A magnetic sorbent MagZ-Ag\(^6\) has been investigated for elemental mercury capture,\(^6\)\(^7\) but lower cost sorbents would be more attractive. As is well-known, maghemite \((\gamma-\text{Fe}_2\text{O}_3)\) is one of the cheapest magnetic materials. Furthermore, an interesting feature of \(\gamma-\text{Fe}_2\text{O}_3\) is the possibility of replacing Fe\(^{3+}\) cations by other metal cations while maintaining the spinel structure. Its physicochemical property is strongly dependent on the nature, amount, and site of metal incorporated into the spinel structure. Our previous research demonstrated that Ti\(^{4+}\) in \(\gamma-\text{Fe}_2\text{O}_3\) can strongly improve its ability for elemental mercury capture, but the presence of a high concentration of SO\(_2\) resulted in a severe interference.\(^3\)

Herein, Mn\(^{3+}\) cations were incorporated into \(\gamma-\text{Fe}_2\text{O}_3\) to form \((\text{Fe}_{3-x}\text{Mn}_x)_{1-\delta}\text{O}_4\) using a coprecipitation method. Then, \((\text{Fe}_{3-x}\text{Mn}_x)_{1-\delta}\text{O}_4\) was characterized using X-ray diffraction (XRD), H\(_2\) temperature programmed reduction (TPR), N\(_2\) adsorption/desorption isotherm, X-ray photoelectron spectroscopy (XPS), and magnetization measurement. At last, a packed-bed reactor system was used to estimate the performance of \((\text{Fe}_{3-x}\text{Mn}_x)_{1-\delta}\text{O}_4\) for elemental mercury capture.

EXPERIMENTAL SECTION

Samples Preparation. Nanosized \(\text{Fe}_{3-x}\text{Mn}_x\text{O}_4\), the precursor of \((\text{Fe}_{3-x}\text{Mn}_x)_{1-\delta}\text{O}_4\), was prepared using a coprecipitation method:

1. Suitable amounts of ferrous sulfate, ferric chloride, and manganese sulfate were dissolved in distilled water (total cation concentration = 0.30 mol L\(^{-1}\)).
2. The mixture was added to a sodium hydroxide solution (about 1.20 mol L\(^{-1}\)), leading to an instantaneous

Received: May 11, 2010
Accepted: December 17, 2010
Revised: December 15, 2010
Published: January 5, 2011
Table 1. Crystal Size, Lattice Parameter, and BET Surface Area of Synthesized (Fe₃₋ₓMnₓ)₂₋₃O₄

<table>
<thead>
<tr>
<th>(Fe₃₋ₓMnₓ)₂₋₃O₄</th>
<th>crystal size/nm</th>
<th>lattice parameter/nm</th>
<th>BET surface area/m² g⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 0</td>
<td>12</td>
<td>0.8326</td>
<td>101</td>
</tr>
<tr>
<td>x = 0.2</td>
<td>14</td>
<td>0.8324</td>
<td>82.9</td>
</tr>
<tr>
<td>x = 0.5</td>
<td>18</td>
<td>0.8332</td>
<td>69.4</td>
</tr>
<tr>
<td>x = 0.8</td>
<td>31</td>
<td>0.8346</td>
<td>37.8</td>
</tr>
</tbody>
</table>

During the reaction, the system was continuously stirred at 800 rpm.

The concentration of elemental mercury in the gas was analyzed using a SG-921 CVAAS. Meanwhile, Hg²⁺ in the gas at the exit of reactor was absorbed by 1.0 mol L⁻¹ of KCl. Then, the amount of Hg²⁺ in the KCl solution was determined using the CVAAS. Breakthrough curve was generated by plotting the concentration of elemental mercury in the gas at the exit of reactor.

RESULTS AND DISCUSSION

Characterization. The characteristic reflections of synthesized samples (shown in Figure S2 in the SI) corresponded very well to the standard card of maghemite (JCPDS: 39-1346). Additional reflections that would indicate the presence of other crystalline manganese oxides, such as Mn₃O₄, Mn₂O₃, or MnO₂, were not present in the diffraction scan. Furthermore, the lattice parameter of synthesized Fe₃₋ₓMnₓO₄ was 0.8456 nm (XRD pattern is not shown), which was much larger than that of magnetite (0.8396 nm). These indicate that Mn cations were incorporated into the spinel structure. Crystal sizes of synthetic samples were calculated with the Scherrer’s equation. As shown in Table 1, the crystal size increased with the increase of Mn content in (Fe₃₋ₓMnₓ)₂₋₃O₄-

TRP profile of γ-Fe₂O₃ showed two obvious reduction peaks (shown in Figure 1A). The peak centered at about 370 °C corresponded to the reduction of Fe₂O₃ to FeO, and the broad peak at a higher temperature was attributed to the reduction of Fe₂O₃ to FeO. TPR profiles of (Fe₃₋ₓMnₓ)₂₋₃O₄ (x≠0) showed three groups of reduction peaks (shown in Figure 1A). The peaks centered at about 345–362 °C corresponded to the reduction of (Fe₃₋ₓMnₓ)₁₋₃O₄ to Fe₃₋ₓMnₓO₄, the peaks centered at about 520–598 °C were attributed to the reduction of Fe₃₋ₓMnₓO₄ to manganowustite (FeₓMn₃O₄), and the last peaks were assigned to the reduction of FeₓMn₃O₄ to FeO and MnO. As Mn was introduced into the spinel structure, the first peak shifted to a lower temperature. Meanwhile, the area of the first peak decreased with the increase of Mn content in (Fe₃₋ₓMnₓ)₁₋₃O₄. It may be related to the decrease of the BET surface area (shown in Table 1). The reduction of (Fe₃₋ₓMnₓ)₁₋₃O₄ to FeₓMn₃O₄ involved the reduction of Mn⁴⁺ to Mn²⁺, Mnᵃ⁺ to Mn²⁺, and partial Fe³⁺ to Fe²⁺. As shown in Figure 1B, the H₂ consumption at <300 °C corresponding to the reduction of Mn⁴⁺ cations on the surface obviously increased with the increase of Mn content in (Fe₃₋ₓMnₓ)₁₋₃O₄. It indicates that the amount of Mn⁴⁺ cations on (Fe₃₋ₓMnₓ)₁₋₃O₄ increased with the increase of Mn content.

A key feature of the novel sorbent is its magnetic property, which makes it possible to separate the sorbent from the sorbate gas stream by means of magnetic field.

Inlet gas contained a stable concentration of elemental mercury (shown in Table S1 in the SI) with a feed of 12 L h⁻¹. The test time for (Fe₃₋ₓMnₓ)₁₋₃O₄ (x≠0) was about 10 h. Because the breakthrough ratios of γ-Fe₂O₃ for elemental mercury capture were more than 90% within 4 h, the test time for γ-Fe₂O₃ was about 4 h. For each test, the sorbent mass was about 25.0 mg (the gas space velocity was about 1.2 × 10⁶ h⁻¹), and the reaction temperature varied from 100 to 300 °C.

The effect of a high concentration of SO₂ on elemental mercury capture was investigated. The inlet gas contained about 2.8 g Nm⁻³ (1000 ppmv) of SO₂ and 10% of O₂. Furthermore, the effect of HCl on elemental mercury capture was investigated. The inlet gas contained about 2.8 g Nm⁻³ of SO₂, 8.1 mg Nm⁻³ (5 ppmv) of HCl, and 10% of O₂.

The concentration of elemental mercury in the gas was analyzed using a SG-921 CVAAS. Meanwhile, Hg²⁺ in the gas at the exit of reactor was absorbed by 1.0 mol L⁻¹ of KCl. Then, the amount of Hg²⁺ in the KCl solution was determined using the CVAAS. Breakthrough curve was generated by plotting the concentration of elemental mercury in the gas at the exit of reactor.

The characteristic reflections of synthesized samples (shown in Figure S2 in the SI) corresponded very well to the standard card of maghemite (JCPDS: 39-1346). Additional reflections that would indicate the presence of other crystalline manganese oxides, such as Mn₃O₄, Mn₂O₃, or MnO₂, were not present in the diffraction scan. Furthermore, the lattice parameter of synthesized Fe₃₋ₓMnₓO₄ was 0.8456 nm (XRD pattern is not shown), which was much larger than that of magnetite (0.8396 nm). These indicate that Mn cations were incorporated into the spinel structure. Crystal sizes of synthetic samples were calculated with the Scherrer’s equation. As shown in Table 1, the crystal size increased with the increase of Mn content in (Fe₃₋ₓMnₓ)₁₋₃O₄.

TRP profile of γ-Fe₂O₃ showed two obvious reduction peaks (shown in Figure 1A). The peak centered at about 370 °C corresponded to the reduction of γ-Fe₂O₃ to FeO, and the broad peak at a higher temperature was attributed to the reduction of Fe₂O₃ to FeO. TPR profiles of (Fe₃₋ₓMnₓ)₁₋₃O₄ (x≠0) showed three groups of reduction peaks (shown in Figure 1A). The peaks centered at about 345–362 °C corresponded to the reduction of (Fe₃₋ₓMnₓ)₁₋₃O₄ to Fe₃₋ₓMnₓO₄, the peaks centered at about 520–598 °C were attributed to the reduction of Fe₃₋ₓMnₓO₄ to manganowustite (FeₓMn₃O₄), and the last peaks were assigned to the reduction of FeₓMn₃O₄ to FeO and MnO. As Mn was introduced into the spinel structure, the first peak shifted to a lower temperature. Meanwhile, the area of the first peak decreased with the increase of Mn content in (Fe₃₋ₓMnₓ)₁₋₃O₄. It may be related to the decrease of the BET surface area (shown in Table 1). The reduction of (Fe₃₋ₓMnₓ)₁₋₃O₄ to Fe₃₋ₓMnₓO₄ involved the reduction of Mn⁴⁺ to Mn²⁺, Mnᵃ⁺ to Mn²⁺, and partial Fe³⁺ to Fe²⁺. As shown in Figure 1B, the H₂ consumption at <300 °C corresponding to the reduction of Mn⁴⁺ cations on the surface obviously increased with the increase of Mn content in (Fe₃₋ₓMnₓ)₁₋₃O₄. It indicates that the amount of Mn⁴⁺ cations on (Fe₃₋ₓMnₓ)₁₋₃O₄ increased with the increase of Mn content.

A key feature of the novel sorbent is its magnetic property, which makes it possible to separate the sorbent from the flue ash mixture. The saturation magnetizations of (Fe₃₋ₓMnₓ)₁₋₃O₄ (x = 0, 0.2, 0.5, and 0.8) were 59.0, 48.6, 45.4, and 45.6 emu g⁻¹,
respectively. (Fe3−xMnx)1−δO4 showed the superparamagnetism with a minimized coercivity and a negligible magnetization hysteresis (shown in Figure 2). The magnetization characteristic ensures that the magnetic sorbents cannot be permanently magnetized after being exposed to an external magnetic field. Therefore, the sorbent particles can be redispersed without aggregation when the magnetic field is removed. The peaks of Fe species on (Fe2.2Mn0.8)1−δO4 were assigned to oxidized Fe species, more likely Fe3+ type species. The binding energies centered at about 709.9 and 711.1 eV may be assigned to Fe3+ cations in the spinel structure, and the binding energy centerd at about 712.3 eV may be ascribed to FeIII−OH (shown in Figure 3a). The Mn peaks at 641.1 and 642.4 eV were assigned to Mn3+ and Mn4+, respectively (shown in Figure 3b). As shown in Table 2, the percent of Mn4+ on (Fe3−xMnx)1−δO4 obviously increased with the increase of Mn content. The O peak mainly centered at about 529.9 eV (shown in Figure 3c), as expected for the transition metal oxides. Another oxygen species at about 531.3 eV was also observed, which was assigned to −OH.

Elemental Mercury Capture under Air. The determination of oxidized mercury concentration at the exit of reactor showed that there was little oxidized mercury in the gas after passing through the reactor tube with (Fe3−xMnx)1−δO4. It indicates that the reduced amount of elemental mercury in the breakthrough curve (shown in Figure S3a in the SI) was captured by the magnetic sorbent. The mass of elemental mercury captured per unit mass of sorbent (capacity) can be calculated from the breakthrough curve. As shown in Table 3, the capacity of (Fe3−xMnx)1−δO4 for elemental mercury capture generally increased with the increase of Mn content. With the continuous increase of reaction temperature from 100 to 300 °C, the capacities of (Fe3−xMnx)1−δO4 for elemental mercury capture showed the same variation tendency, and the optimal reaction temperatures all centered at about 250 °C.

Elemental mercury capture by metal oxides in the absence of halogen is generally attributed to the Mars-Maessen mechanism. The mechanism for elemental mercury capture by (Fe3−xMnx)1−δO4 was studied using XPS analysis. In comparison with fresh (Fe2−xMnx0.8)1−δO4 (shown in Figure 3a-c), no obvious changes happened in the XPS spectra over the spectral regions of Fe 2p and O 1s (shown in Figure 3d and e). As shown in Figure 3f, the component centered at about 640.4 eV corresponding to Mn4+ cations did not appear. Meanwhile, the ratio of Mn4+/Mn3+ cation to Mn3+ cation decreased from 1.57 to 1.37 after elemental mercury capture. They suggest that some Mn4+ cations were reduced to Mn3+ cations during elemental mercury capture. Taking account of the binding energy of Hg 4f7/2 at about 100.1 eV and the absence of Hg 4f5/2 at about 105 eV corresponding to Hg2O (shown in Figure 3g), the oxidized mercury formed may be mercurous oxide. Mercurous oxide has been previously observed on (Fe2−xTix)1−δO4 and (Fe2−xTix0.8Mnx0.2)1−δO4 in our previous research. Therefore, the mechanism of elemental mercury capture by (Fe3−xMnx)1−δO4 can be described as

\[\text{Hg}_6^{0} (s) + 2\equiv \rightarrow 2\equiv - \text{Hg}_6^{0} (ad) \]

\[2\equiv - \text{Hg}_6^{0} + \equiv \text{Mn}^{IV} \rightarrow \equiv \text{Mn}^{II} \text{Hg}^{I} \]

Reaction 2 was the collision of elemental mercury with the surface, resulting in a physical adsorption on the cation vacancies. Cation vacancies on the surface are typical Lewis acid sites. Elemental mercury capture by metal oxides in the absence of halogen is generally attributed to the Mars-Maessen mechanism. Gaseous elemental mercury is a Lewis base because it can be an electron-pair donor. The term Lewis base is more general and refers to the propensity to complex with a Lewis acid. If the concentration of elemental mercury in gas phase was sufficiently high for the surface to be saturated with physically adsorbed elemental mercury, the concentration of physically adsorbed elemental mercury on the surface (\([\equiv \text{OH}]^{-}\)) can be described as

\[[\equiv \text{OH}]^{-} = k_1 [\equiv \equiv] \]

where \([\equiv \equiv]\) and \(k_1\) were the percent of cation vacancies on the surface and the constant, respectively. Reaction 2 was an exothermic reaction, so \(k_1\) would rapidly decrease with the increase of reaction temperature.

Reaction 3 was the oxidation of physically adsorbed elemental mercury to a Mn−Hg bimetal oxide by Mn4+ cations on the surface. As is well-known, mercury is a heavy metal, and its atomic radius (1.76 Å) is much bigger than the radiuses of Mn3+ (0.60 Å), Mn4+ (0.66 Å), Fe3+ (0.64 Å), and O2− (1.32 Å). When a mercury atom is...
Figure 3. XPS spectra of (Fe_{2.2}Mn_{0.8})_{1-\delta}O_{4} over the spectral regions of Fe 2p, Mn 2p, O 1s, Hg 4f, and S 2p.
physically adsorbed on the cation vacancy, several ions including Mn$^{4+}$, Mn$^{3+}$, Fe$^{3+}$, and O$_2^-$ around the cation vacancy may be covered. Once the adsorbed elemental mercury contacts Mn$^{4+}$ cation on the surface, the adsorbed elemental mercury will be oxidized.

The array of cation vacancies, Mn$^{3+}$/Mn$^{4+}$, Fe$^{3+}$, and O$_2^-$ in/on (Fe$_3$Mn$_x$)$_{0.13}$O$_4$ was well-proportioned even at the atomic scale due to the incorporation of Mn cations into the spinel structure. The near two Mn cations on (Fe$_3$Mn$_x$)$_{0.13}$O$_4$ were spaced at least by two Fe cations and four oxygen anions, so the distance between two Mn$^{3+}$ cations was much more than the diameter of the Hg atom. When a mercury atom was physically adsorbed on the active site (i.e., □), at most one Mn$^{4+}$ cation can be covered. Therefore, reaction 3 happened. As is well-known, Hg$_2$O is not stable and it can self-decompose to HgO and Hg at a high temperature. Because the oxidized mercury formed on (Fe$_3$Mn$_x$)$_{0.13}$O$_4$ was isolated MnIIIHgI$_2$, the near two oxidized mercury formed were spaced at least by two Fe cations and four oxygen anions. As a result, two mercurous cations cannot collide to transform to one Hg atom and one Hg$^{2+}$ cation. Therefore, the formed mercurous oxide on (Fe$_3$Mn$_x$)$_{0.13}$O$_4$ was stable (shown in Figure S3).

The kinetic equation of reaction 3 can be described as

$$\frac{d[\text{Mn}^{IV}]}{dt} = -\frac{d[\text{□} - \text{Hg}^0]}{dt} = \frac{d[\text{Mn}^{III} \text{Hg}^+]}{dt} = k[\text{Mn}^{IV}][\text{□} - \text{Hg}^0]$$

where [MnIV], [MnIIIHg$^+$], and k were the percent of Mn$^{4+}$ cation, the percent of the bimetal oxide on the surface, and the kinetic constant, respectively. Because reaction 3 was promoted with the increase of reaction temperature, k would increase with the increase of reaction temperature. According to eq 5, [MnIV] may be approximately described as

$$[\text{Mn}^{IV}] = [\text{Mn}^{IV}]_0 \exp (- k[\text{□} - \text{Hg}^0]t)$$

Then,

$$\frac{d[\text{Mn}^{III} \text{Hg}^+]}{dt} = kk_1[\text{□}][\text{Mn}^{IV}]_0 \exp (- kk_1[\text{□}]t)$$

The determination of oxidized mercury concentration at the exit of reactor showed that there was little oxidized mercury in the gas after passing through the reactor tube with (Fe$_2$Mn$_{0.8}$)$_{0.13}$O$_4$ in the presence of 1000 ppmv of SO$_2$. It indicates that the reduced amount of elemental mercury in the breakthrough curve (shown in Figure S3d in the SI) was captured by (Fe$_2$Mn$_{0.8}$)$_{0.13}$O$_4$. Table 3 shows that the presence of a high concentration of SO$_2$ significantly affects elemental mercury capture by sorbents. The components in the real coal-fired flue gas which can interfere with elemental mercury capture are mainly a high concentration of SO$_2$/SO$_3$. SO$_2$ gas molecules may compete with gaseous elemental mercury for elemental mercury capture (shown in Tables 2 and 3), so the increase of Mn$^{4+}$ cations and cation vacancies on the surface may mainly account for the prominent promotion of elemental mercury capture by (Fe$_3$Mn$_x$)$_{0.13}$O$_4$ due to the increase of Mn content.

Although reaction 3 was promoted with the increase of reaction temperature, elemental mercury capture reached the optimal condition at a specific temperature, in most cases not the highest temperature due to the influence of reaction temperature on the physical adsorption (reaction 2). Mn$^{4+}$ cation on (Fe$_2$Mn$_{0.8}$)$_{0.13}$O$_4$ may be easier to be reduced by □ to form Mn$^{3+}$ cation at higher temperatures, so the capacity of (Fe$_2$Mn$_{0.8}$)$_{0.13}$O$_4$ for elemental mercury capture at 300 °C was much less than that of (Fe$_3$Mn$_{0.8}$)$_{0.13}$O$_4$.

Table 2. Data of Atomic Ratios on the Surface Collected from XPS Analysis/%

<table>
<thead>
<tr>
<th>(Fe$_3$Mnx)${0.13}$O$_4$</th>
<th>□</th>
<th>Mn</th>
<th>Mn$^{2+}$</th>
<th>Mn$^{3+}$</th>
<th>Mn$^{4+}$</th>
<th>BET(□/□)</th>
<th>$[\text{Mn}^{IV}]_0$/m2 g$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 0.2</td>
<td>4.7</td>
<td>5.1</td>
<td>1.9</td>
<td>1.6</td>
<td>1.6</td>
<td>0.062</td>
<td></td>
</tr>
<tr>
<td>x = 0.5</td>
<td>6.4</td>
<td>13.6</td>
<td>-</td>
<td>7.6</td>
<td>6.0</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>x = 0.8</td>
<td>8.1</td>
<td>18.5</td>
<td>-</td>
<td>7.2</td>
<td>11.3</td>
<td>0.35</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Capacity of (Fe$_3$Mn$_x$)$_{0.13}$O$_4$ for Elemental Mercury Capture mg g$^{-1}$

<table>
<thead>
<tr>
<th>(Fe$_3$Mnx)${0.13}$O$_4$</th>
<th>100 °C</th>
<th>150 °C</th>
<th>200 °C</th>
<th>250 °C</th>
<th>300 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 0</td>
<td><0.20</td>
<td><0.20</td>
<td>0.26</td>
<td>0.22</td>
<td>0.20</td>
</tr>
<tr>
<td>x = 0.2</td>
<td>1.92</td>
<td>1.80</td>
<td>1.60</td>
<td>2.20</td>
<td>2.00</td>
</tr>
<tr>
<td>x = 0.5</td>
<td>2.90</td>
<td>2.92</td>
<td>2.42</td>
<td>4.26</td>
<td>1.74</td>
</tr>
<tr>
<td>x = 0.8</td>
<td>2.86</td>
<td>2.30</td>
<td>4.44</td>
<td>5.10</td>
<td>1.04</td>
</tr>
<tr>
<td>x = 0.8 with SO$_2$</td>
<td>2.38</td>
<td>1.92</td>
<td>1.72</td>
<td>2.48</td>
<td>0.96</td>
</tr>
<tr>
<td>x = 0.8 with SO$_2$ and HCl</td>
<td>2.01</td>
<td>1.92</td>
<td>2.07</td>
<td>1.54</td>
<td>2.21</td>
</tr>
</tbody>
</table>

where Q was the amount of elemental mercury captured, which can be described as the product of $[\text{Mn}^{III} \text{Hg}^+]$ and BET surface area. As shown in eq 9, Q should be approximately proportional to the product of BET, [\square], and $[\text{Mn}^{IV}]_0$. There generally was a positive correlation between BET [\square] and $[\text{Mn}^{IV}]_0$ and the capacity of (Fe$_3$Mn$_x$)$_{0.13}$O$_4$ for elemental mercury capture (shown in Tables 2 and 3).

$$Q = \text{BET}kk_1[\text{□}] [\text{Mn}^{IV}]_0 \int_0^t \exp (- kk_1[\text{□}]t) dt$$

Effect of SO$_2$ on Elemental Mercury Capture by (Fe$_2$Mn$_{0.8}$)$_{0.13}$O$_4$. The chemical composition in the flue gas significantly affects elemental mercury capture by sorbents. The components in the real coal-fired flue gas which can interfere with elemental mercury capture are mainly a high concentration of SO$_2$/SO$_3$. SO$_2$ gas molecules may compete with gaseous elemental mercury for the active sites. The concentration of SO$_2$ in the real flue gas is about 10^4--10^5 times that of elemental mercury ($\mu g m^{-3}$).

The determination of oxidized mercury concentration at the exit of reactor showed that there was little oxidized mercury in the gas after passing through the reactor tube with (Fe$_2$Mn$_{0.8}$)$_{0.13}$O$_4$ in the presence of 1000 ppmv of SO$_2$. It indicates that the reduced amount of elemental mercury in the breakthrough curve (shown in Figure S3d in the SI) was captured by (Fe$_2$Mn$_{0.8}$)$_{0.13}$O$_4$. However, (Fe$_2$Mn$_{0.8}$)$_{0.13}$O$_4$ still showed an excellent capacity for elemental mercury capture (>1.70 mg g$^{-1}$ at 100--250 °C) in the presence of 1000 ppmv of SO$_2$. Previous research postulated a mechanism for the heterogeneous uptake and oxidation of SO$_2$ on iron oxides, and the reactions can be described as

$$\text{Fe}^{III} - \text{OH} + \text{SO}_2(\text{g}) \rightarrow \text{Fe}^{III} \text{OSO}_2^{2-} + \text{H}^+$$

$$\text{Fe}^{III} \text{OSO}_2^{2-} \rightarrow \text{Fe}^{II} + \text{SO}_3^{2-}$$

$$\text{Fe}^{III} - \text{OH} + \text{SO}_3^{2-} \rightarrow \text{Fe}^{II} + \text{H}_2\text{SO}_4$$
As shown in reactions 10-12, the uptake of SO2 on iron oxides may involve hydroxyl groups on the surface. Furthermore, SO2 can also react with Mn\(^{3+}\) cations on the surface,\(^1\) and the reaction can be described as

\[
\text{SO}_2(g) + \equiv \text{Mn}^{4+} + 2 \equiv \text{O} \rightarrow \equiv \text{Mn}^{3+} + \text{SO}_4^{2-} \quad (13)
\]

If reaction 13 happened, elemental mercury capture by (Fe\(2.2\)-Mn\(0.8\))\(_{0.1}\)\(\delta\)O\(_4\) would be interfered.

Elemental mercury capture by (Fe\(2.2\)-Mn\(0.8\))\(_{0.1}\)\(\delta\)O\(_4\) in the presence of a high concentration of SO\(_2\) at 150 °C was also studied using XPS (shown in Figure 3h-l). The S peaks mainly centered about 103.2 eV was attributed to Si 2p of SiO\(_2\) in quartz wool.

The possible routes of HCl uptake on (Fe\(2.2\)-Mn\(0.8\))\(_{0.1}\)\(\delta\)O\(_4\) can be described as

\[
\equiv \text{Fe}^{III}\text{-OH} + \text{HCl(g)} \rightarrow \equiv \text{Fe}^{III} + \text{Cl} + \text{H}_2\text{O} \quad (14)
\]

\[
\equiv \text{Mn}^{4+} + \text{HCl(g)} \rightarrow \equiv \text{Mn}^{III} + \text{Cl}^*(ad) + \text{H}^+ \quad (15)
\]

Reaction 14 may predominate over the uptake of HCl on (Fe\(2.2\)-Mn\(0.8\))\(_{0.1}\)\(\delta\)O\(_4\) at 100—200 °C, so the presence of 5 ppmv of HCl showed an insignificant effect on elemental mercury capture by (Fe\(2.2\)-Mn\(0.8\))\(_{0.1}\)\(\delta\)O\(_4\). The amount of \(\equiv \text{Fe}^{III}\text{-OH}\) would decrease with the increase of reaction temperature due to the dehydration, so reaction 15 may predominate over the uptake of HCl on (Fe\(2.2\)-Mn\(0.8\))\(_{0.1}\)\(\delta\)O\(_4\) at 250—300 °C. There may be a large number of SO\(_2\) adsorbed on (Fe\(2.2\)-Mn\(0.8\))\(_{0.1}\)\(\delta\)O\(_4\) at 250 °C, so the formed Cl\(^*(ad)\) may be eliminated by the adsorbed SO\(_2\). As a result, the presence of 5 ppmv of HCl showed a moderate interference with elemental mercury capture at 250 °C. Furthermore, the oxidized mercury formed may still be mercuric sulfate at 100—200 °C. Most of SO\(_2\) would desorb from (Fe\(2.2\)-Mn\(0.8\))\(_{0.1}\)\(\delta\)O\(_4\) with the further increase of reaction temperature, so the Langmuir—Hinshelwood mechanism may mainly account for the oxidation of elemental mercury at 300 °C. The near two Mn\(^{3+}\) cations on (Fe\(2.2\)-Mn\(0.8\))\(_{0.1}\)\(\delta\)O\(_4\) were spaced at least by two Fe cations and four oxygen anions, so the formed Cl\(^*(ad)\) may also be spaced by two Fe cations and four oxygen anions. When a mercury atom was physically adsorbed on the active site (i.e., \(\equiv \)), at most one Cl\(^*(ad)\) can be covered, so reaction 16 happened and the oxidized mercury formed was HgCl.

\[
\equiv \text{Hg} + \text{Cl}^*(ad) \rightarrow \text{HgCl}^*(ad) \quad (16)
\]

The kinetic constant of reaction 16 may be much more than that of reaction 3, so elemental mercury capture by (Fe\(2.2\)-Mn\(0.8\))\(_{0.1}\)\(\delta\)O\(_4\) at 300 °C was promoted by 5 ppmv of HCl. As well-known, HgCl\(_2\) is not stable, and it can self-decompose to HgCl\(_2\) and Hg at a high temperature. Because HgCl formed on (Fe\(2.2\)-Mn\(0.8\))\(_{0.1}\)\(\delta\)O\(_4\) was spaced at least by two Fe cations and four oxygen anions, the near two HgCl cannot collide to transform to one Hg and one HgCl\(_2\). As a result, the formed HgCl\(_2\) was stable and Hg\(^{2+}\) was undetected at the exit of the reactor.

Magnetic Separation. Although the crystal sizes of synthesized (Fe\(3\)-Mn.)\(_{0.1}\)\(\delta\)O\(_4\) were less than 50 nm, their particulate sizes were higher than 100 μm due to the agglomeration after the thermal treatment. The magnetic sorbent can be recovered in situ by a two-step process. The magnetic sorbent can first be removed from the flue gas as a mixture with the fly ash particles by an electrostatic precipitator or fabric filter, followed by the magnetic separation of the sorbent and adsorbed mercury from the fly ash. Previous research demonstrated that the magnetic sorbent can be easily separated from the fly ash.\(^5\)\(^7\) The photograph inserted in Figure 2 shows the result of separating (Fe\(2.2\)-Mn\(0.8\))\(_{0.1}\)\(\delta\)O\(_4\) from the mixture with 10 g of fly ash and 1 g of (Fe\(2.2\)-Mn\(0.8\))\(_{0.1}\)\(\delta\)O\(_4\) by a normal magnet. After (Fe\(2.2\)-Mn\(0.8\))\(_{0.1}\)\(\delta\)O\(_4\) was separated from the mixture, the contents of Mn and Fe in the fly ash did not increase. It indicates that (Fe\(2.2\)-Mn\(0.8\))\(_{0.1}\)\(\delta\)O\(_4\) can be separated from the fly ash using magnetic separation, leaving the fly ash essentially free of sorbent and adsorbed mercury. Magnetic separation has been widely used in the mineral processing,\(^2\) and the device of the equipment for the magnetic separation of the sorbent from the fly ash may be modeled on that used in the mineral processing.
In summary, (Fe$_2$.Mn$_{0.8}$)$_{1-x}$O$_4$ showed an excellent capacity for elemental mercury capture. Meanwhile, its inherent magnetization made it possible to separate (Fe$_2$.Mn$_{0.8}$)$_{1-x}$O$_4$ from the fly ash, leaving the fly ash essentially free of sorbent and adsorbed mercury. Therefore, (Fe$_2$.Mn$_{0.8}$)$_{1-x}$O$_4$ may be a promising sorbent for the control of elemental mercury emission. In our future work, (Fe$_2$.Mn$_{0.8}$)$_{1-x}$O$_4$ will be investigated to capture elemental mercury from the flue gas at a pilot scale, in which the separation of sorbent from the fly ash and sorbent regeneration will be further studied.

ASSOCIATED CONTENT

Supporting Information. Text, Figures S1-S3, and Tables S1 and S2. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
*Phone: 86-21-54745591; e-mail: nqyan@sjtu.edu.cn.

ACKNOWLEDGMENT

This study was supported by the High-Tech R&D Program of China (No. 2007AA062340) and Shanghai Tongji Gao Tingyao Environmental Science & Technology Development Foundation.

REFERENCES

