Full Length Article

Cu-BTC as a novel material for elemental mercury removal from sintering gas

Dongyao Chen, Songjian Zhao, Zan Qu, Naiqiang Yan

School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China

GRAPHICAL ABSTRACT

The reaction process for the Hg0 removal over Cu-BTC.

ABSTRACT

Cu-BTC, as one of the metal organic frameworks (MOFs), was prepared and employed for the capture of elemental mercury (Hg0) in sintering gas. The material was characterized using TGA, XPS, XRD, BET surface measurement and TEM. Results showed that Cu-BTC had good microscopic morphologies, large BET surface area and high thermal stability, which make it suitable for sintering gas. The Hg0 removal performance was investigated under different conditions. Cu-BTC had limited Hg0 removal ability without HCl, but exhibited an excellent Hg0 removal efficiency when 15 ppm HCl was added. HCl and O\textsubscript{2} played an important role for the Hg0 removal efficiency when they were at low concentration. According to the results of Hg0 removal performance and physiochemical characterization, the mechanism of Hg0 capture was speculated with and without HCl. Furthermore, the influence of SO\textsubscript{2}, NO and H\textsubscript{2}O were studied. SO\textsubscript{2} has inhibition effect on the removal of Hg0, while NO can promote the Hg0 removal. As for H\textsubscript{2}O, it has nearly no effect on mercury removal. When HCl and O\textsubscript{2} were at high concentration, the influence of SO\textsubscript{2}, NO and H\textsubscript{2}O are not significant.

1. Introduction

Mercury is regarded as one of the most life-threatening pollutants because of its high volatilization, stable chemical properties and the easy accumulation in living things [1]. Mercury in gas phase exists mainly in the form of elemental mercury (Hg0), which has a long lifetime allowing for global dispersion [2,3]. The gas phase mercury can also transfer to the water and solid by deposition, and the inorganic form of mercury can be converted into methylmercury by some bacteria (e.g., iron reducing bacteria and sulfate reducing bacteria) [1,4]. Then...
the methylmercury bioaccumulates through the food chain, and affect wildlife, domestic animals, and humans alike [5]. The consumption of marine and freshwater foods is the majority of human methylmercury exposure [6]. The famous Minamata disease in Japan is a classic example of the health hazards of mercury.

As one of the important anthropogenic sources of atmospheric mercury, iron and steel production contributed about 46 t of the total atmospheric mercury emissions in 2010 [7]. China made 822.7 million tons of crude steel in 2014 [8], and since the mercury emission characteristics is about 0.04 g Hg/ton steel [7,9,10], the mercury emission from iron and steel production in China can be calculated to be 32.9 t. Although this emission is less than the emissions from coal combustion (292 t [11]), nonferrous metal smelting (97.4 t [12]) and cement production (75.1 t [13]), it still cannot be ignored. And the sintering process can provide more than half of the mercury emissions from iron and steel production [14]. Now, it can be seen that sintering process has been an important mercury source. Therefore, mercury removal from sintering gas is the key for the control of mercury emission from iron and steel production.

Currently, mercury is removed mainly by desulfurization devices, selective catalytic reduction (SCR) process and activated carbon. Oxidized mercury (Hg\(^{2+}\)) can be absorbed by desulfurization devices and activated carbon. However, since a substantial portion of mercury exists in the form of elemental mercury (Hg\(^{0}\)), desulfurization devices and activated carbon have limited removal rate because of its high volatility and low solubility in water [15]. Hg\(^{0}\) can be oxidized to Hg\(^{2+}\) with the help of SCR catalyst, and then be removed by desulfurization devices [16], but the catalytic efficiency was limited by the temperature windows. The optimal temperature of conventional SCR is 350–450 °C, while the temperature of the sintering gas is in the range of 120–180 °C [17], and the conventional SCR catalysts may be inactive at this low temperature [18]. Recently solid supported ionic liquids have shown remarkable Hg\(^{0}\) removal capacity from natural gas at lab and industrial scale [19,20], however, high temperature of sintering gas as compared to natural gas, restricts their application for Hg\(^{0}\) removal from sintering gas as well.

Thus, materials with higher mercury removal efficiency for sintering gas are needed.

Metal organic frameworks (MOFs), consisting of metal center and organic ligands, have emerged as the novel porous crystalline materials due to their high surface areas, tunable pore sizes, high thermal stability, and tailorable chemistry [21,22]. They have recently attracted widespread research interests in gas storage and separation [23–25], drug delivery [26], and heterogeneous catalysis [27–29].

Cu-BTC (BTC = benzene-1,3,5-tricarboxylate) is a well known copper-based MOF with a 3D square-shaped channel system [30]. It was first reported by Williams et al. [31]. At present, most of the researches of Cu-BTC mainly focus on gas capture and chemical production [32–34]. Since Cu-BTC exhibited favorable catalytic and adsorptive performance in the previous research, it might have the potential to be used for mercury removal, but there are not many reports for mercury removal using Cu-BTC.

In this study, Cu-BTC was prepared and used for elemental mercury removal from the sintering gas. The mercury removal performance was investigated under different work conditions, and the influence of temperature, O\(_2\) concentration, HCl concentration and other gas components (including SO\(_2\), NO and H\(_2\)O) was examined. Besides, the mercury removal mechanism was also discussed according to the results of mercury removal performance and physicochemical characterization.

2. Experimental

2.1. Preparation of catalysts

Cu-BTC was prepared by hydrothermal method. 2.078 g (8.6 mmol) Cu(NO\(_3\))\(_2\)·3H\(_2\)O was dissolved in 20 mL deionized water, then 1.056 g (5 mmol) 1,3,5-Benzenetri-carboxylic acid (H\(_3\)BTC) dissolved in 20 mL N,N-dimethylformamide (DMF) and 20 mL absolute ethanol was added into the solution. After 30 min of stirring, the mixed solution was transferred to a Teflon-lined autoclave and heated at 110 °C for 18 h. The recovered blue crystals were washed with DMF and absolute ethanol for several times, and dried in vacuum at 110 °C overnight.

2.2. Material characterization

The morphology and structure of Cu-BTC were observed by JEM-2010HT transmission electron microscope (TEM), and samples were dispersed in ethanol with strong sonication before the analysis. Thermo gravimetric analysis (TGA) was conducted with Mettler Toledo thermo gravimetric analyzer to see the stability of Cu-BTC, and the ramp rate for the TGA was 10 °C/min from 30 to 700 °C. The Brunauer–Emmett–Teller (BET) surface area was measured using Nova-2200e adsorption system (Quantachrome Nova 2200e), and the pore volume was calculated by Barrett–Joyner–Halenda (BJH) method. X-ray diffraction (XRD) data was recorded by SHIMADZU XRD-6100 diffractometer with Cu Ka radiation with 40 kV, 20 mA, and the scanning range was from 5° to 30° with a scanning rate of 10°/min. The X-ray photoelectron spectroscopy (XPS) was measured by Kratos Axis Ultra-DLD spectrometer with Al Ka radiation source, and The C 1s line at 284.8 eV was taken as a reference for binding energy calibration.

2.3. Mercury removal studies

The experiment system is shown as Fig. 1. The whole system...
consists of a simulated gas preparation system, a fixed-bed reactor with temperature controller, a cold vapor atomic fluorescence spectrometry (CVAFS) and an online data acquisition system. The composition of simulated gas can be controlled by the mass flow controller (MFC), and each constituent of the gas was thoroughly mixed with others in a mixing tank. The flow rate of the gas was 350 mL/min, corresponding with a space velocity (SV) of 3.64 × 10^5 h⁻¹. A Hg⁰ permeation tube was used to generate Hg⁰ vapor carried by pure N₂, which was then introduced to the inlet of the gas mixer. The inlet concentration of Hg⁰ was around 200 μg/m³. CVAFS analyzer was employed as an online continuous detector that could only detect Hg⁰. The concentration of Hg⁰ was measured using Lumex RA 915+. In each test, the simulated gas firstly passed through the bypass and the baseline of Hg⁰ was determined by CVAFS. Then the gas was diverted to the fixed-bed reactor containing 20 mg of sample. The mercury removal performance was investigated under different temperature (25–250 °C), O₂ concentration (2–10%), and HCl concentration (5–15 ppm). The influence of SO₂ (100 ppm), NO (100 ppm) and H₂O (10%) was also studied. The Hg⁰ removal efficiency can be calculated using the follow formula:

\[
E = \frac{H_{\text{in}} - H_{\text{out}}}{H_{\text{in}}} \times 100\%
\]

where E is the mercury removal efficiency, \(H_{\text{in}}\) and \(H_{\text{out}}\) are respectively the inlet and outlet concentration of Hg⁰.

3. Results and discussion

3.1. The physicochemical characterization of Cu-BTC

To obtain the microscopic morphologies and structural information, transmission electron microscopy (TEM) analysis of Cu-BTC was performed, as shown in Fig. 2(a). It can be found that Cu-BTC exhibits octahedral-shaped crystals with good dispersivity. Besides, the particle size was nearly 400–600 nm. Some differences from the reported features of Cu-BTC may be caused by the difference of reaction temperature and reaction pressure [35].

Fig. 2(b) shows the XRD pattern of Cu-BTC, which is consistent with
corresponds to the characteristic of Cu-BTC. It indicates that Cu-BTC is successfully prepared.

The N2 sorption-desorption isotherm is shown in Fig. 2(c), which was assigned to type IV according to the IUPAC classification and exhibited a type H1 hysteresis at high relative pressure, which means Cu-BTC is microporous solid with narrow slit-like pores. As seen in Table 1, the BET surface area and the pore volume of Cu-BTC were

the previous report [36], and the peaks at around $2\theta = 14.5^\circ$ corresponds to the characteristic of Cu-BTC [37]. It indicates that Cu-BTC is successfully prepared.

The N2 sorption-desorption isotherm is shown in Fig. 2(c), which was assigned to type IV according to the IUPAC classification and exhibited a type H1 hysteresis at high relative pressure, which means Cu-BTC is microporous solid with narrow slit-like pores [38]. As seen in Table 1, the BET surface area and the pore volume of Cu-BTC were
were larger than that of the conventional adsorbents. A large surface area is advantageous for mercury removal.

The results above shows that Cu-BTC is stable up to a temperature of 300 °C. Since the condition of sintering gas is about 300 °C. Therefore, the suitable operational temperature of Cu-BTC is between 150 °C and 240 °C.

D. Chen et al. showed excellent Hg0 removal capacity in the present of HCl. Since HCl exists in sintering gas, Cu-BTC is well suited for Hg0 removal.

The Hg0 removal efficiencies of Cu-BTC, zeolite and activated carbon are shown in Fig. 4. The experiment was conducted at a typical temperature of sintering gas (150 °C) with the gas component of Hg0+10% O2+15 ppm HCl. Obviously, the Hg0 removal performance of Cu-BTC was best.

To explore the effect of HCl, another Hg0 removal experiment was conducted: the sample was pretreated with 15 ppm HCl for 5 min and then purged with N2 for 30 min. Next, Hg0 with 10% O2 was passed through the sample. The temperature of the experiment was kept at 150 °C. Finally, after sintering adsorption, the mercury content was determined by mercury analyzer (Lumex RA 915+, Lumex, Russia) to obtain the mercury adsorption capability. Besides, the mercury adsorption capability in the condition of without HCl was also measured. As seen in Fig. 5, the sample still had high Hg0 removal efficiency without HCl. And the mercury adsorption capability was up to 1.7 mg/g, while without HCl, the mercury adsorption capability was only 0.04 mg/g. (Table 2) Moreover, after 5 min's HCl adsorption and 30 min's N2 purge, the HCl content of the sample was determined by a microcoulomb analyzer (WK-2D, Jiangfen, China), and 2.1 mg/g HCl was found on the sample. The above result illustrated that Cu-BTC has strong adsorption capacity for HCl. That may be the main reason why Cu-BTC showed better Hg0 removal performance than zeolite and activated carbon. After HCl adsorption, the adsorption capacity for mercury can be substantially improved. Furthermore, since the sample was purged by nitrogen, HCl may be chemically adsorbed by the material or enter into the channels, instead of physically adsorption on the surface.

To further understand the Hg removal performance in the presence of HCl, the influence of O2 and HCl concentration was studied, shown in Figs. 6 and 7. The temperature was 150 °C. Fig. 6(a) shows that O2 concentration had little influence on the Hg0 removal efficiency when the HCl concentration was 15 ppm. Similarly, in the condition of 10% O2, the effect of HCl concentration was less (Fig. 7(a)). However, for HCl and O2, if one of them was at low concentration, the influence of the other would be significant (Figs. 6(b) and 7(b)). Higher HCl concentration caused higher Hg0 removal efficiency with only 2% O2 in the gas. And in the condition of 5 ppm HCl, higher O2 concentration resulted in better Hg0 removal performance. The above results indicated that both HCl and O2 played an important role in the removal of Hg0.

Moreover, the influence of SO2 (100 ppm), NO (100 ppm) and H2O were studied in typical sintering gas conditions (150 °C, 15 ppm HCl, 10% O2), shown in Fig. 8. When SO2 was introduced, the Hg0 removal efficiency slightly decreased (Fig. 8(a)), and when NO was in the inlet gas, no significant change on Hg0 removal efficiency was found (Fig. 8(b)). Also, the Hg0 removal efficiency did not change significantly when H2O was in the inlet gas (Fig. 8(c)). This may be because the Hg0 removal efficiency is already high due to the high concentration of HCl and O2, while NO can promote the Hg0 removal substantially. When HCl and O2 are at high concentration, the influence of SO2 and NO is small. Therefore, another experiment was conducted when HCl and O2 were at low concentration (5 ppm HCl, 2% O2). As shown in Fig. 8(e), when SO2 was passed, the Hg0 removal efficiency decreased more significantly, and NO also inhibited the Hg0 removal efficiency was observed when NO was in the inlet gas (Fig. 8(f)). When there was H2O in the gas, no significant change on Hg0 removal efficiency was found (Fig. 8(g)). Furthermore, the influence of coexistence of HCl, SO2, NO and H2O on Hg0 removal was investigated. In typical sintering gas conditions (150 °C, 15 ppm HCl, 10% O2), the Hg0 removal rate was slightly decreased (Fig. 8(d)). Similar result was also found when HCl and O2 were at low concentration (5 ppm HCl, 2% O2) (Fig. 8(h)). In conclusion, SO2 has inhibition effect on the removal of Hg0, while NO can promote the Hg0 removal. As for H2O, it has nearly no effects on mercury removal. When HCl and O2 are at high concentration, the influence of SO2, NO and H2O are not significant. And the influence on Hg0 removal under the coexistence of HCl, SO2, NO and H2O is also not significant. That means in typical sintering gas condition, Cu-BTC can still have high Hg0 removal efficiency.
Fig. 8. The influence of gas composition: (a) SO$_2$, (b) NO, (c) H$_2$O and (d) coexistence of HCl, SO$_2$, NO and H$_2$O in the condition of 15 ppm HCl and 10% O$_2$; (e) SO$_2$, (f) NO, (g) H$_2$O and (h) coexistence of HCl, SO$_2$, NO and H$_2$O in the condition of 5 ppm HCl and 2% O$_2$.
removal efficiency with the existence of other gas.

3.3. Hg\(^0\) removal mechanism

XPS spectra was also measured to explore the Hg\(^0\) removal mechanism. Fig. 8 shows the XPS spectra of Cu-BTC over the spectral regions of Hg 4f, O 1s, Cl 2p and Cu 2p.

Fig. 9(a) and (b) recorded the Hg 4f XPS spectrum. The peak at 100.7 eV was assigned to Hg\(^2+\), and the peak intensity was weaker than that when HCl existed. Some Hg\(^0\) might be oxidized by active oxygen to HgO when no HCl existed. After adding HCl, the characteristic peak intensity increased obviously, implied that Hg\(^0\) may be oxidized by active Cl to HgCl\(_2\) with the existence of HCl, besides, the generated HgO also react with HCl to produced HgCl\(_2\). As for the peak at 103.6 eV, it might be the peak of Si from Silica wool, which was used for supporting the sample.

The O 1s spectrum is shown in Fig. 9(c) and (d). The peak at 531.7 eV was attributed to the chemisorbed oxygen. And the peak at about 533 eV was assigned to the oxygen components on the carboxylate groups (O–C=O) due to the residues of organic ligand. After

Fig. 9. XPS spectra of Cu-BTC over the spectral regions: (a) Hg 4f after reaction with Hg + O\(_2\), (b) Hg 4f after reaction with Hg + O\(_2\) + HCl, (c) O 1s after reaction with Hg + O\(_2\), (d) O 1s after reaction with Hg + O\(_2\) + HCl, (e) Cu 2p after reaction with Hg + O\(_2\), and (f) Cu 2p after reaction with Hg + O\(_2\) + HCl.
reaction with $\text{Hg} + \text{O}_2 + \text{HCl}$, the amount of chemisorbed oxygen (531.7 eV) decreased (Fig. 9(d)), while the O 1s spectrum did not change significantly after reaction with $\text{Hg} + \text{O}_2$ (Fig. 9(c)). It suggests that chemisorbed oxygen participated in the oxidation of Hg^0 with the existence of HCl.

The Cl 2p spectrum is shown in Fig. 9(e). The peak at 198.6 eV and 200.2 eV were respectively attributed to ionic and covalent chlorine species, respectively [43]. The ionic species may be produced HgCl_2 by the reaction of Hg^0 and active Cl, or the intermediate of CuCl or CuCl_2 by the reaction of Cu open metal site and HCl. Besides, the covalent chlorine species may be the adsorbed HCl. After reaction with Hg^0, the ionic species significantly increased, which means HgCl_2 was generated during the reaction.

The Cu 2p spectrum is shown in Fig. 9(f) and (g). After reaction without HCl, no significant change in valence state of Cu was found. When HCl existed in the gas, the result was similar. That means without HCl, the role of Cu may be not significant, and with the existence of HCl, Cu plays a catalytic role in mercury removal. Besides, Cu in Cu-BTC is the unsaturated metal site, which may be helpful for Cu to play the catalytic role better.

Based on the above results, the Hg^0 removal mechanism can be speculated as follows, shown in Fig. 10: when there is no HCl in the gas, Hg^0 is removed mainly by active oxygen to generate HgO_2; with the existence of HCl, Cu-BTC can absorb the HCl to form the intermediate of CuCl or CuCl_2, then Hg^0 is captured and oxidized to Hg^{2+} by the chemisorbed O_2, and finally reacts with CuCl/ CuCl_2 to produce HgCl2. Besides, active Cl might be generated by active oxygen and then oxidized Hg^0 to HgCl2. Cu plays a catalytic role during the reaction.

4. Conclusions

By a facile method, Cu-BTC was successfully synthesized as a novel material for removal of Hg^0. Cu-BTC has good physical and chemical properties that suitable for sintering gas. Although the Hg^0 removal ability of Cu-BTC was limited when there were only Hg, N_2, and O_2 in the gas, it can be extremely improved by HCl. HCl and O_2 influenced the Hg^0 removal efficiency when they were at low concentration. Without HCl, Hg^0 is removed mainly by active oxygen. In the present of HCl, the Hg^0 removal mechanism can be described as: HCl is strongly absorbed by Cu-BTC to form the intermediate of CuCl or CuCl_2, then Hg^0 is captured and oxidized to Hg^{2+} by the chemisorbed O_2, and finally reacted with CuCl/ CuCl_2 to produce HgCl2; besides, active Cl might be generated by active oxygen and then oxidized Hg^0 to HgCl2; Cu plays a catalytic role during the reaction. Furthermore, SO_2 has inhibition effect on the removal of Hg^0, while NO can promote the Hg^0 removal. As for H_2O, it has nearly no effects on mercury removal. In a typical sintering gas condition where HCl and O_2 concentration were high, the influence of SO_2, NO and H_2O are not pronounced. The above results show that Cu-BTC can be a promising sorbent for capturing Hg^0 from sintering gas.

Acknowledgements

This study was supported by the National Key Research and Development Program of China (No. 2017YFC0210500) and the National Natural Science Foundation of China (No. 21677096) and (No. 21607102), and China’s Post-doctoral Science Fun (No. 2015MS81626).

References

