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A B S T R A C T

Millions of premature deaths worldwide every year mostly in China and India are contributed by the poor air
quality. The atmospheric visibility is a proven indicator of the ambient air quality. In this study, nine megacities
were selected, including Beijing, Shanghai and Guangzhou from China, Chicago, Los Angeles (LA) and New York
City (NYC) from the United States, and Mumbai, Chennai and Jaipur from India. The data of visibility, aerosol
optical depth (AOD), and meteorological factors from 1973 to 2015 were collected. The temporal variations of
annual and monthly percentages of bad days (visibility< 5 km) and good days (visibility> 15 km) were
evaluated. Visibility of Chicago, LA and NYC gradually improved during the past 43 years and has reached a very
good level (good day percentages: 75–88%; bad day percentages: 0 – 4%). Conversely, visibility in Mumbai,
Chennai and Jaipur continued deteriorating and suffered an extremely poor visibility situation in recent years
(good day percentages: 0; bad day percentages: 6–100%). Likewise, visibility in Beijing, Shanghai and
Guangzhou has experienced the worsening period during the industrial development from 1970s and turned
better after the 1990s. A strong seasonal pattern of bad day percentages of each year were observed in most
cities, especially in the winter, which is caused by the fossil fuel combustion for heating, relatively high relative
humidity, and other unfavorable meteorological conditions. The low visibility events occurred more frequently
in days with low wind speeds and specific wind directions, further explaining the seasonal patterns of visibility.
With population growth from the period of 2000–2010 to the period of 2011–2015, AOD and bad day per-
centages both increased in Mumbai, Chennai, Jaipur and Beijing while others were relatively stable. This study
demonstrated that the macro-control of pollution emissions could effectively reduce air deterioration. The re-
lationships among visibility variation, meteorological, pollutant and population factors provide valuable sci-
entific support for public health researches, air quality managements (monitoring and forecasting), and clean
energy initiatives.

1. Introduction

The atmospheric visibility is defined as the maximum horizontal
distance, at which the threshold of a target object can be recognized
against the background by human eyes (Deng et al., 2012; Horvath,
1981). High visibility (> 100 km) can be observed in unpolluted cir-
cumstances with clear weather while low visibility would be often at-
tributed to heavy air pollution and bad meteorological conditions (Deng
et al., 2012; Zhao et al., 2011). The visibility could decrease due to the
scattering and absorption of visible light by particles and gases in the
atmosphere (Watson and Chow, 2006; Hyslop, 2009), and the patterns
of air pollution are exactly massive emissions of particle and gas

pollutants into the air. Furthermore, it is known that the emission of
particulate pollutants can cause visibility impairment, which makes the
visibility an important proxy for the particulate matter pollution
(Clancy et al., 2002; Kim et al., 2006). Although visibility can be im-
pacted by specific meteorological phenomena such as high wind speeds,
rainfall and fog events, the long-term influence of meteorological con-
ditions is relatively stable (Zhao et al., 2011). Therefore, the long-term
trend of visibility can indicate the variation of air pollution status (Chen
and Xie, 2013; Fu et al., 2014).

Due to rapid industrial developments and economic growth, human
beings have paid great environmental costs for serious air pollution
issues, which could heavily damage public health (Zhang et al., 2010).
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The United States, China and India are three of the most populated
countries in the world with vast territories. They all have been ex-
periencing significant industrial developing processes. In the past dec-
ades, because of the industrial revolution and significant environmental
improvement, atmospheric visibility of the U.S. cites decreased before
1970s and then increased, which has the most serious sulfur and or-
ganics pollution in the mid-eastern and western urban regions (Davis,
1991; Malm, 1992; Malm and Molenar, 1984; Malm et al., 1994;
Schichtel et al., 2001). As a result of population and economic explo-
sions in Indian cities, the associated air pollution cause significant de-
clines of visibility over a hundred years (Dani et al., 2012; De et al.,
2005; Jaswal et al., 2013; Tiwari et al., 2011). In the most populated
areas of China such as the North China Plain and the Pearl River Delta,
evident visibility falling on account of air pollution attracted a large
number of researchers investigating the visibility trends and relation-
ships with meteorological factors and other pollutants (Deng et al.,
2012, 2008; Fu et al., 2014; Gao et al., 2011; Zhang et al., 2010; Zhao
et al., 2011). Hence, the understanding of the mechanism of visibility
variations plays a key role in air pollution emergency response and
regional air quality management.

In this study, three megacities from the three countries including
China, the U.S. and India were chosen. These nine cities are Beijing,
Shanghai, Guangzhou, New York City (NYC), Chicago, Los Angeles
(LA), Mumbai, Chennai and Jaipur (Fig. 1). These cities are the most
economically developed, populated and represent different geographic
and meteorological conditions of each country. From 1973 to 2015, the
annual visibility variations were investigated. Relationships between
visibility and meteorological factors (relative humidity, wind speed and
wind direction), social economic parameters and the aerosol optical
depth (AOD) were discussed. Studying the long-term trends of visibility
in populated cities with the consideration of impacts of human activ-
ities is valuable for smart urban planning.

2. Data and methodology

Beijing, Shanghai, Guangzhou, Chicago, NYC, LA, Mumbai, Chennai
and Jaipur were chosen as the representative cities from China, the U.S.
and India, respectively (Fig. 1), which were selected from ten most
populated cities of each country. With complete time series of datasets

from 1973 to 2015, the top three populated cites were determined.
Visibility and other meteorological parameters including the wind
speed, wind direction, air temperature and dew-point temperature of
these nine cities with at least 3 h intervals from 1973 to 2015 were
collected from the National Climate Data Center (NCDC) (Data source:
http://www1.ncdc.noaa.gov/pub/data/noaa/). The units of visibility
datasets are miles, which was converted into kilometers. Although the
NCDC is highly authoritative that provides global weather and climate
data, there are non-negligible uncertainties of original datasets caused
by various factors such as the conversion of observation methods.
Hence a series of processes were performed to obtain data, which could
accurately reflect relationships between visibility and air pollution.

To minimize the influences caused by meteorological factors, low
visibility observations due to specific weather conditions such as mist,
precipitation and fog were removed, which generally have high relative
humidity (RH) and could not represent status of air pollution (Che
et al., 2007; Chen and Xie, 2013). With RH changing, the diameter and
refractive index will change because hydrophilic aerosols absorb water
vapor. It is defined as the aerosol hygroscopicity, which reflected as the
variation of visibility in the horizontal direction (Liu et al., 2012; Tang,
1996). Therefore, visibility data with RH<90% in the range from
9:00 a.m. to 6:00 p.m. (local time) were chosen for screening, cleaning
and further long-term trend analysis (Section 3.1). RH was calculated
through the equation (Linsley et al., 1988):
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where T (℃) represents the air temperature and Td represents (℃) the
dew point temperature. In addition, the SYNOP (Surface Synoptic Ob-
servations) and METAR (Meteorological Terminal Air Report) standards
of visibility observation were mixed together in original datasets.
METAR data are encoded by automated airport weather stations and
SYNOP data are encoded by both manned and automated weather
stations. These two types of records have different observation stan-
dards, that the upper limit of METAR is 10 miles while observations of
SYNOP could reach 30 miles or higher (many observations with values
of 100 miles were recorded) (Li et al., 2016). Moreover, the time re-
solution of SYNOP is 3 h and METAR is 1 h or half an hour. To com-
pensate the influences caused by METAR records, only monitoring

Fig. 1. (a) Locations of China, the United States and India on the world map; (b) Locations of Chicago, Los Angeles and New York City in the US; (c) Locations of Mumbai, Chennai and
Jaipur in India; (d) Locations of Beijing, Shanghai and Guangzhou in China.
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stations at airports and data at integral points with 3 h intervals from
9:00 a.m. to 6:00 p.m. were selected (see supplementary information
Table 1 for station lists of each city), during which time the possibility
of fog and mist are relatively lower in the whole day. Calculating daily
average values then obtaining the annual medians of visibility was the
widely accepted method for the long-term visibility trend analysis (Gao
et al., 2011; Lee, 1988). However, METAR observations almost occu-
pied the whole period after late 1990s of American cities, and main-
tained good air quality for most of the time (with 10 miles records),
leading to a sharp decrease of annual median visibility (see supple-
mentary information Fig. S1 for example). Thus, we decide to use
percentages of good days (daily mean visibility> 15 km) and bad days
(daily mean visibility< 5 km) of each year for each city instead, to
demonstrate the long-term trends of visibility, which could more ac-
curately indicate the long-term variation of air pollution (Chen and Xie,
2013; Gomez and Smith, 1987). Furthermore, the bad visibility fre-
quency was calculated directly based on the data points, instead of
daily mean values of visibility. These two results were used in the fol-
lowing analysis interpreting relationships between visibility and other
variables.

The aerosol optical depth (AOD) of major cities all over the world
from 2000 to 2015 was derived from the MODIS products MOD04 and
MYD04, carried on satellites Terra and Auqa. The resolution of our AOD
data (sub-satellite point) were 3 km × 3 km. Original datasets were
extracted from corresponding pixels of MOD04 and MYD04, calculating
mean values of pixel values after removing filling values, which were
recorded when no data was observed. Then the mean values were used
as the daily average AOD. If no available observation was found during
an entire day, null values were used for the daily average AOD values.
Likewise, correlations between AOD and visibility were performed
using nonparametric Kendall rank correlation test, because visibility
data were not normal distributed. The significant level, α, was set at

0.05. The correlation coefficient τ and P values were presented. To
explore relationships between urbanization and air pollution, popula-
tion data of each city at each year were collected. The population data
of cities in U.S. and China were both downloaded from the national
bureau of statistics (http://www.stats.gov.cn/). And Indian population
data were collected from this website: http://www.indiaonlinepages.
com/population/index.html.

3. Results and discussion

3.1. Long-term visibility trend

The long-term trends of annual percentages of good and bad visi-
bility days demonstrated different characteristics among cities and
countries (Fig. 2), which indicated different government attitudes to-
wards the air quality. In Fig. 2, it is easy to sort these three countries
according to their situations of visibility: U.S. cities> Chines cities>
Indian cities. Cities of each country have demonstrated different pat-
terns of long-term visibility variation. Indian cities have experienced
much more low visibility conditions in the past 43 years compared to
the U.S. and China.

In China, Beijing had apparent higher percentages of bad days
(1.4–29.3%) compared to Shanghai (1.2–9.3%) and Guangzhou (0 –
12.6%) (Fig. 2a). Between 1973 and late 1990s, the good and bad day
percentages of Beijing decreased then increased, respectively. It in-
dicates the continuously heavy air pollution caused by industrial
emissions found in previous studies (Fu et al., 2014; Zhao et al., 2011).
From 1998–2008, the visibility substantially improved partially due to
the “Blue Sky Project” for hosting the 2008 Beijing Olympic Games.
During this project, the daily average PM10 Air Quality Index (AQI) was
reduced from 81 to 44 (Zhang et al., 2010) through limiting emissions
from coal and biomass combustion in the surrounding areas of Beijing,

Fig. 2. Long-term variations of the annual good (visibility> 15 km) and bad (visibility< 5 km) day percentages of based on visibility of nine populated cities in (a) China, (b) U.S. and
(c) India. Solid lines represent the good day percentage while dashed lines represent the bad day percentage.
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which were reported the two largest contributing factors of low visi-
bility (Chang et al., 2009; Zhao et al., 2011). However, after 2008, with
private cars booming and the deregulation of air pollution emissions,
visibility sharply deteriorated (the bad day percentage increased from
1.7% to 29.3%), causing the public alarm and making headlines of
many international medias (Fig. 2a). For Shanghai, the bad day per-
centages fluctuated and reached peaks at 1987 (9.3%), 2003 (9.0%)
and 2015 (9.2%) then stayed at a relatively low level for the rest of the
time. However, the good day percentages declined from 58.1% to
15.8% during 1991–2008, which could be explained by the air pollu-
tion emissions associated with the rapid economic growth and in-
dustrial development (Chang et al., 2009; Gao et al., 2011). The bad
day percentages of Guangzhou increased from 1973 (0.3%) to 1998
(12.6%) then declined to 2015 (1.6%), while the good day percentage
declined sharply from 1973 (83.6%) to late 1990s (3.5%) then in-
creased to 2010s (65.0%). It coincided with the increasing industrial
emissions caused by the Open Policy and the Economic Reform in 1978
and the environmental protection policy aiming at controlling acid
rains since 1998 (Chang et al., 2009).

Comparing to the three cities in China, the trends of good and bad
day percentages of the other six cities showed fewer fluctuations. The
visibility of Chicago, LA and NYC starts improving since 1970s, with
good day percentages obviously increasing and bad day percentages
declining (Fig. 2b), which reflected the effect of government environ-
mental protection measures such as Clean Air Act in the 1960s, 1970s,
and 1990s (Belden, 2001; Chestnut and Dennis, 1997). By comparison,
it was evident that the air pollution abatement of LA did not work as
well as Chicago and NYC. As one of the most air polluted cities, LA was

suffering fine particulate matter (PM) and ozone pollutions, with fre-
quent sunny days and low precipitation accelerating ozone formation,
as well as secondary PM (Baldassare et al., 2011). In 2005, a grant
program entitled “Diesel Emissions Reduction Act (DERA)” was au-
thorized to improve the air quality by retrofitting diesel engines
(Congress, 2005). DERA had conspicuous effect in LA (with bad day
percentages dropping from 19% to 3% and good day percentages in-
creasing from 24% to 76%) after it was implemented (Fig. 2b). The
visibility improvement (good day percentages exceeded 75% in recent
years) of Chicago and NYC also benefited from curtailing air pollution
by the U.S. government.

In India, the visibility in Mumbai, Chennai and Jaipur reflected bad
air quality condition caused by diversified pollutant sources, which
were dominated by coal and biomass combustion in Jaipur (Dani et al.,
2012; Jaswal et al., 2013) and mainly identified as vehicle emission,
industries, fuel combustion, and construction pollutions in Mumbai and
Chennai (Guttikunda et al., 2014; Kumar et al., 2001; Patankar and
Trivedi, 2011). Good day percentages of all three Indian cities main-
tained less than 5% during most of the time and bad day percentages of
Mumbai and Jaipur both even reached as high as 100% after 2010
(Fig. 2c). The bad day percentage trends of Mumbai and Jaipur were
similar, which constantly increased from 1970s to 2010s, indicating
continued emissions of pollutants and the invalid environmental policy
in these years. However, the bad day percentage of Chennai kept below
10% and the good day percentage was below 1% after 1975, respec-
tively, suggesting long periods of “general bad visibility” and the dif-
ferent visibility levels between Chennai and other two Indian cities.

Fig. 3 depicts the temporal distribution of the monthly bad day

Fig. 3. The monthly distribution of the bad day percentage from 1973 to 2015 at cities of (a) China, (b) U.S. and (c) India. The color represents fractional distribution of bad day
percentages of each month. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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percentages of each city. In Chinese cities, Beijing had relatively higher
bad day percentages in winter (Dec-Jan) and summer (Jun-Jul) in-
dicating the coal-combustion residential heating in the winter and the
aerosol scattering efficiency and the secondary sulfate in the summer,
where the aerosol scattering efficiency was accelerated by high ambient
RH in summer (Chang et al., 2009; Fu et al., 2014; Zhao et al., 2011).
The high bad day percentage values of Shanghai and Guangzhou both
occurred in the winter (Dec-Feb) and spring (Apr-Jun). The low tem-
perature in the winter could weaken the air circulation. RH during the
pre-monsoon season (spring) is relatively high and the wind direction
around both Shanghai and Guangzhou are mostly northwest, where the
air pollutants derived from populated inland areas (Gao et al., 2011; Lin
et al., 2014; Shi et al., 2014; Wang et al., 2011). The monthly bad day
percentage of Chicago and NYC remained low values and did not ex-
hibit any obvious seasonal trend (Fig. 3b). The bad day percentages of
LA had higher values in autumn (Sep-Nov), which was primarily due to
the high RH and enhanced air pollutants emissions from sources at the
western upwind direction during this time (Hildemann et al., 1994).
Analogously, all Indian cities showed peaked values in the winter (Oct-
Jan), in the consequence of biomass combustion in Jaipur and domestic
fuel combustion for heating in Mumbai and Chennai (Guttikunda et al.,
2014; Kumar et al., 2001; Patankar and Trivedi, 2011). Likewise, high
bad day percentages of Mumbai and Jaipur in the monsoon season
(Jun-Aug) might be also influenced by the higher aerosol scattering

efficiency based on higher ambient RH compared to other seasons.

3.2. Relationships between visibility and meteorological factors

The relationships of occurrence frequency of hourly bad visibility
versus RH and wind direction can further explain the long-term and
monthly distributions of bad visibility in each city. Fig. 4 exhibits the
occurrence frequency of hourly visibility in relative to RH. The highest
occurrence frequency for all nine cities all appear at the lower right
corners (with RH>90%) of each subfigure, indicating the presence of
specific weather conditions (e.g. fog and rain). The colors of strips at
each visibility classification were good indicators of various visibility
conditions. Beijing, Chicago, LA and NYC had highlight strips (yellow-
red colors) at high visibility level (> 15 km), reflecting relatively better
visibility conditions than others in the past 43 years. Mumbai, Chennai
and Jaipur include no data at good visibility levels (> 15 km) and have
yellow-red colors in low visibility strips (0–5 km) (Fig. 4c). Focusing on
bad visibility strips (visibility< 5 km), hot spots mainly appeared in
high RH regions, which were observed in cities of Beijing, Shanghai,
Guangzhou, LA, Mumbai and Chennai. It is consistent with the finding
of high bad day percentages of these cities in wet seasons (summer in
Beijing, Shanghai, Mumbai and Jaipur, and autumn in LA) (Cheung
et al., 2011).

Furthermore, the wind rose plots reveal relationships of bad

Fig. 4. Occurrence frequency of hourly bad visibility in regard to RH in cities of (a) China, (b) U.S. and (c) India from 1973 to 2015. The visibility was classified into four levels: 0–5 km,
5–10 km, 10–15 km,> 15 km. The RH was divided into 33 categories. The color of each grid represents the occurrence frequency of hourly bad visibility at specific visibility level and RH
category. The right bottom corners of each subfigure indicate low visibility in weather conditions like rain and fog, which generally bring about RH>100%. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.).

Y. Hu et al. Environmental Research 159 (2017) 466–473

470



visibility frequency with wind speed and wind direction (Fig. 5). The
bad visibility frequency concentrates in low wind speeds in cities in-
cluding Beijing and Guangzhou suggesting that local emissions were the
main contributors. It is in line with the explanation above that severe
convective condition under high wind speeds is beneficial for air pol-
lutants dispersion (Chen and Xie, 2013; Zhang et al., 2010). On the
other side, bad visibility frequencies also condense in specific wind
direction ranges, which is evident in cities of Beijing, Shanghai,
Guangzhou, Chicago, LA, Chennai and Jaipur. Because large seasonal
variation of wind direction was observed in most selected cities, wind
rose plots further elucidates local air pollutants emission sources and
the monthly change of bad day percentage. For instance, LA sits in a
large basin with the Pacific Ocean to the West, and it is under the ty-
pical etesian climate with western winds scraping in the autumn.
Therefore, the air pollutants emitted from the large industrial park lo-
cated to the west were transported to LA (Hildemann et al., 1994). It is
confirmed by the fact that LA had high bad day percentage values
during September to November (Fig. 2b).

3.3. Relationship between visibility and AOD

Relationships between annual AOD and bad day percentage be-
tween 2000 and 2015 are shown in Fig. 6. The variation of AOD can
effectively reflect air pollution levels to some extent (Wang et al., 2011;

Zhang, 2010). Positive correlations in LA (τ = 0.64, P<0.001),
Mumbai (τ = 0.62, P< 0.001) and Jaipur (τ = 0.70, P<0.001) were
discovered, which were coincident with the fact that air pollution was
the key factor of visibility degradation in these cities (Hildemann et al.,
1994; Venkataraman et al., 2002). Other cities did not demonstrate
significant correlations between annual AOD and bad day percentage,
mainly due to the non-neglected disturbance caused by meteorological
factors, which were most likely supposed to be the RH (Wu et al., 2012)
(see Supplementary information Fig. S2).

Fig. 7 presents the comparison of average bad visibility frequencies
between 2000–2010 and 2010–2015, considering both AOD and po-
pulation in these cities. At first glance, bubbles in the figure were
clearly divided into three groups by country. The population boom and
deterioration of AOD and visibility were observed in cities of devel-
oping countries. On the other side, relatively better status of U.S. cities
was kept well. Specifically, Jaipur, Mumbai and Chennai had the
highest bad visibility frequency values while Shanghai had the highest
AOD values. Shanghai is one of the representative areas with high AOD
values caused by massive air pollution emissions and unfavorable me-
teorological conditions (Huang et al., 2012). However, the slightly
decreased average bad visibility frequency values in Shanghai after
2010 (from 14.4% to 10.4%) were also observed. After 2000, popula-
tion booms in Jaipur and Chennai were obvious, along with bad visi-
bility frequencies and AOD increasing. Likewise, both Mumbai and

Fig. 5. The bad visibility frequency in relative to wind speed and wind direction in cities of (a) China, (b) the U.S. and (c) India. The radius of each subplot represents the wind speed
while the angle of each grid represents the wind direction. The color of each grid represents the bad visibility frequency. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.).
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Beijing display increased AOD values and bad visibility frequencies,
although populations remain stable. U.S. cities show relatively stable
status in terms of population, visibility and AOD except for a noticeable
visibility improvement for LA. To some extent, it indicated that sub-
stantial industrial development, fast-growing number of private ve-
hicles, and significant population growth in recent two decades of these
two developing countries have paid the price of great air pollution,
contributing to the increase of bad visibility frequencies and AOD,
Taking into account of the seriousness of the air pollution, how to de-
velop economy at a lower environmental cost is very severe for India
and China.

4. Conclusion

During the past four decades, the long-term trend of atmospheric
visibility of selected megacities clearly depicted impacts of air

pollutants emissions and various pollution control strategies. Chicago,
NYC and LA have successfully gone through the stage of rapid economic
development with the cost of environmental deterioration and return
good air quality condition again. After the industrial development in
the 1970s, visibility in Chinese megacities rapidly decreased and im-
proved with implementing air quality protection policies since late
1990s, reflecting that China is taking the old road of the treatment after
pollution. However, one of the main sources of air pollution in Mumbai,
Chennai and Jaipur is coal and biomass combustion, which is difficult
to control in the current development of India. In addition, the in-
creasing population these years in these cities further enhanced the air
pollutant emission intensity from this source. Hence, the air quality of
these three cities was all getting degraded and did not exhibit any sign
of improvement, which requires economic developments and enough
policy makers' attention. The temporal variations of the annual bad
visibility day percentages of Chicago, LA and NYC indicate that the

Fig. 6. Correlations between the annual bad day percentage and AOD in cities from 2000 to 2015.

Fig. 7. Comparisons of the bad visibility
frequencies in terms of AOD and population
in Beijing (BJ), Shanghai (SH), Guangzhou
(GZ), Chicago (CG), LA, NYC, Mumbai (MB),
Chennai (CN) and Jaipur (JP) between (a)
2000 – 2010 and (b) 2010 – 2015. The x and
y axis represent AOD and bad visibility fre-
quencies, respectively. The size of bubbles
represents the population of each city.
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reduction of air pollutants emissions could effectively impair the hostile
air quality. The control of coal and biomass combustion, vehicle ex-
haust, and industrial emissions could lead to significant improvement in
atmospheric visibility in selected cities.
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